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Abstract—CRCs have desirable properties for effective error detection. But their software implementation, which relies on many steps

of the polynomial division, is typically slower than other codes such as weaker checksums. A relevant question is whether there are
some particular CRCs that have fast implementation. In this paper, we introduce such fast CRCs as well as an effective technique to

implement them. For these fast CRCs, even without using table lookup, it is possible either to eliminate or to greatly reduce many steps

of the polynomial division during their computation.

Index Terms—Fast CRC, low-complexity CRC, checksum, error-detection code, Hamming code, period of polynomial, fast software
implementation.

Ç

1 INTRODUCTION

THIS paper considers cyclical redundancy checks (CRCs),
which are effective for detecting errors in communica-

tion and computer systems. An h-bit CRC is typically
generated by a binary polynomial of the form

MðXÞ ¼ ðX þ 1ÞM1ðXÞ; ð1Þ

where M1ðXÞ is a primitive polynomial of degree h% 1.
Existing CRCs include the CRC-16 generated by
X16 þX15 þX2 þ 1 ¼ ðX þ 1ÞðX15 þX þ 1Þ, a n d t h e
CRC -CC ITT g en e r a t e d by X16 þX12 þX5 þ 1 ¼
ðX þ 1ÞðX15 þX14 þX13 þX12 þX4 þX3 þX2 þX þ 1Þ.

The CRC generated by (1) has the following desirable
properties: 1) its maximum length is 2h%1 % 1 bits, 2) its
burst-error-detecting capability is b ¼ h, i.e., all error bursts
of length up to h bits are detected, and 3) its minimum
distance is d ¼ 4, i.e., all double errors and all odd numbers
of errors are detected. These properties are called the
guaranteed error-detecting capability. The CRC may detect
other errors, but not guaranteed, e.g., it can detect a large
percentage of error bursts of length greater than h [2], [10],
[15]. An important problem, which is NP-hard and is not
addressed in this paper, is the determination of the
undetected error probability of a code [7].

General-purpose computers and compilers are increas-
ingly faster and more sophisticated. Software algorithms
are commonly used in operations, modeling, simulations,
and performance analysis of systems and networks. CRC
implementation in software is desirable, because many
computers do not have hardware circuits dedicated for
CRC computation. However, software implementation of
typical CRCs is slow, because it relies on many steps of the
polynomial division during CRC computation. It is this
speed limitation of CRCs that leads to the use of checksums

(which are fast and typically do not rely on table lookup) as
alternatives to CRCs in many high-speed networking
applications, although checksums are weaker than CRCs.
For example, the 16-bit ones-complement checksum is used
in Internet protocol and the Fletcher checksum is used in
ISO [5], [17]. There are also other fast error-detection codes
[3], [4], [12], [13], but they do not have all the desirable
properties of CRCs.

A relevant question is whether there is a new family of
CRCs that are faster than the existing CRCs. In this paper,
we introduce such CRCs, as well as a technique for their
efficient implementation. For these fast CRCs, it is possible
either to eliminate or to greatly reduce many steps of the
polynomial division during their computation.

A common existing technique for reducing themany steps
during CRC computation is to use table lookup, which
requires extra memory [9], [14], [15], [16]. In contrast, even
without table lookup, our fast CRCs require only a small
number of steps for their computation. Algorithms that do
not rely on table lookup have an advantage of being less
dependent on issues such as cache architecture and cache
miss. In particular, it is possible to use as lowas 1.5 operations
per input message byte to encode our fast 64-bit CRC (which
is implemented in C and requires no table lookup).

The paper is organized as follows: In Section 2, we
review known facts about CRCs, which serve as the
background for our discussions. We present several
different algorithms for computing CRCs, some of which
are designed especially for our fast CRCs. In Section 3, we
identify the form of the generator polynomials for the fast
CRCs, and introduce a new technique for their implementa-
tion. We then determine their guaranteed error-detecting
capability: the minimum distance, the burst-error-detecting
capability, and the maximum code length. In Section 4, we
discuss CRC software complexity and show that our fast
CRCs are typically faster than other CRCs. In Section 5, we
present summaries and extensions of the paper.

1.1 Notation and Convention
In this paper, we consider polynomials that have binary
coefficients 0 and 1. Thus, all polynomial operations are
performed in the binary field GF(2), i.e., by using
polynomial arithmetic modulo 2. Let AðXÞ and MðXÞ be
two polynomials, then RMðXÞ½AðXÞ' denotes the remainder
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polynomial that is obtained when AðXÞ is divided byMðXÞ.
We must have degreeðRMðXÞ½AðXÞ'Þ < degreeðMðXÞ).

An s-tuple denotes a block of s bits A ¼ ðas%1;
as%2; . . . ; a1; a0Þ, which is also presented by the binary
polynomial as%1Xs%1 þ as%2Xs%2 þ ( ( ( þ a1X þ a0 of degree
less than s.Weuse the closely relatednotationAðXÞ to denote
this polynomial, i.e.,A is composed of the binary coefficients
of AðXÞ. Thus, the tuple A and the polynomial AðXÞ are
equivalent and can be used interchangeably. Typically, the
polynomial notation is used to describe the mathematical
properties of codes, whereas the tuple notation is used to
describe the algorithmic properties (such as pseudocodes
and computer programs) of codes. If Q1ðXÞ and Q2ðXÞ are
s1-tuple and s2-tuple, respectively, then the ðs1 þ s2Þ-tuple
ðQ1ðXÞ; Q2ðXÞ) denotes the polynomial Q1ðXÞXs2 þQ2ðXÞ,
which is the concatenation of Q2ðXÞ to Q1ðXÞ.

In this paper, we are interested in CRCs that have low
software complexity. Software complexity of an algorithm
refers to the number of operations (i.e., operation count)
used to implement the algorithm (whereas hardware com-
plexity refers to the number of gates used to implement the
algorithm). Suppose that we have two CRCs that operate
under similar environments and use similar types of
operations, but one CRC requires lower operation count
(e.g., having a smaller loop) than the other. It is likely that
the CRC with lower operation count (i.e., lower software
complexity) will result in faster encoding. Thus, complexity
correlates with speed. However, the amount of the correla-
tion also depends on many other complicating factors such
as memory speed, cache size, compiler, operating system,
pipelining, and CPU architecture. A CRC is called “fast” if it
has low software complexity and low memory requirement
(e.g., it requires no lookup table or only a small lookup
table). A CRC is called “faster” than another if, for a similar
level of memory requirement, it has lower software
complexity.

Analgorithm (or implementation) is called bitwise if it does
not use table lookup. Note that a bitwise algorithm does not
necessarily involve only bit-by-bitmanipulation or computa-
tion. Fast checksums are typically bitwise. Bitwise algo-
rithms, which do not rely on table lookup, have an advantage
of being less dependent on issues such as cache architecture,
cache miss, and software code space. Ideally, fast CRC
algorithms shouldhave lowcomplexity andbe bitwise. Thus,
unless explicitly stated,we focus onbitwise algorithms in this
paper. Table-lookup algorithms are presented in [19, Appen-
dix A] which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TC.2009.83.

The notation ðk; l; dÞ denotes a systematic code with k ¼
the total bit length of the code, l ¼ the bit length of the input
message, and d ¼ the minimum distance of the code. The
burst-error-detecting capability of a code is denoted by b. To
facilitate cross-references, we label some blocks of text as
“Remarks,”which are an integral part of the presentation and
should not be viewed as isolated observations or comments.

2 CRC ALGORITHMS

In this section, we review some known facts about software
CRC implementation (e.g., see [2], [4], [6], [9], [12], [14], [15],

[16]). To lay a firm foundation for our later discussions, we
present these facts in more precise and general forms than
those often seen in the literature. Our presentation is a
straightforward generalization of the results in [15].

2.1 General CRC Theory
Suppose that we use an h-bit CRC, generated by a
polynomial MðXÞ of degree h, to protect an input
message UðXÞ, which has l bits. By definition, the check
polynomial P ðXÞ is the remainder that is obtained by
dividing UðXÞXh by MðXÞ, i.e., P ðXÞ ¼ RMðXÞ UðXÞXh

! "
.

Because computers can process tuples of bits (e.g., bytes
or words) at a time, codes having efficient software
implementation should be encoded on tuples. Typical
modern processors can efficiently handle tuples of 8, 16,
32, and 64 bits.

Let s > 0 be any positive integer. We can write

l ¼ rþ ðn% 1Þs, for some n > 0 and 0 < r ) s. We then

process the CRC by dividing the input message UðXÞ into
n tuples. The first tuple has rbits, and all the other tuples have

sbits. Because r ) s, we can then insert ðs% rÞ zeros to the left
of UðXÞ to increase its length from l to l0 ¼ lþ s% r ¼ ns,

without affecting the CRC computation, because RMðXÞ½ð0;
0; . . . ; 0; UðXÞÞXh' ¼ RMðXÞ½UðXÞXh' ¼ P ðXÞ. That is, the

first tuple now also has s bits, the ðs% rÞ left-hand bits of

which are always zeros.
Because each tuple i has s bits, it can be represented by a

polynomial QiðXÞ of degree < s. Thus, the input message is
represented by UðXÞ ¼ ðQ0ðXÞ; Q1ðXÞ; . . . ; Qn%1ðXÞÞ. We
emphasize that, for given h and l, we are free to choose the
value of s (commonly chosen values are s ¼ 8, 16, 32, and
64 bits). As shown later, the choice of s can have significant
impact on CRC speed.

Define UiðXÞ ¼ ðQ0ðXÞ; Q1ðXÞ; . . . ; QiðXÞÞ to be the first
iþ 1 input tuples, i.e.,

U0ðXÞ ¼ Q0ðXÞ
U1ðXÞ ¼ ðQ0ðXÞ; Q1ðXÞÞ

( ( (
Un%1ðXÞ ¼ ðQ0ðXÞ; Q1ðXÞ; . . . ; Qn%1ðXÞÞ

¼ UðXÞ:

Thus, for i ¼ 1; 2 . . . ; n% 1; UiðXÞ is determined from
Ui%1ðXÞ and QiðXÞ by

UiðXÞ ¼ ðUi%1ðXÞ; QiðXÞÞ
¼ Ui%1ðXÞXs þQiðXÞ:

ð2Þ

For i ¼ 0; 1; . . . ; n% 1, let PiðXÞ be the CRC check
polynomial for the partial input message UiðXÞ, i.e.,

PiðXÞ ¼ RMðXÞ UiðXÞXh
! "

: ð3Þ

In particular, we have P0ðXÞ ¼ RMðXÞ Q0ðXÞXh
! "

, and

Pn%1ðXÞ ¼ RMðXÞ Un%1ðXÞXh
! "

¼ RMðXÞ UðXÞXh
! "

¼ P ðXÞ;

which is the CRC check polynomial for the entire input
message UðXÞ.
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Substituting (2) into (3), we have

PiðXÞ ¼ RMðXÞ UiðXÞXh
! "

¼ RMðXÞ ðUi%1ðXÞXs þQiðXÞÞXh
! "

¼ RMðXÞ ðUi%1ðXÞXhÞXs
! "

þ RMðXÞ QiðXÞXh
! "

:

Using (3), we then have

PiðXÞ ¼ RMðXÞ Pi%1ðXÞXs½ ' þRMðXÞ QiðXÞXh
! "

¼ RMðXÞ Pi%1ðXÞXs þQiðXÞXh
! "

;
ð4Þ

for i ¼ 1; 2; . . . ; n% 1. Note that (4) is a straightforward
generalization of a result in [15], which deals with the
special cases h ¼ 16 and s 2 f8; 16g. Thus, the check tuple
PiðXÞ is computed from QiðXÞ and the previous check tuple
Pi%1ðXÞ. Recall that P0ðXÞ ¼ RMðXÞ Q0ðXÞXh

! "
and P ðXÞ ¼

Pn%1ðXÞ is the CRC check tuple for UðXÞ. Using (4), P ðXÞ is
then computed via the following pseudocode:

Remark 1. We now review the computational complexity of
polynomial division, which is needed in CRC computa-
tion. Given two polynomials WðXÞ and Y ðXÞ, let
V ðXÞ ¼ RWðXÞ Y ðXÞ½ ' be the remainder polynomial that
is obtained when Y ðXÞ is divided by WðXÞ. Let w and y
be the degrees of WðXÞ and Y ðXÞ, respectively. If y < w
(i.e., y% wþ 1 ) 0), then V ðXÞ ¼ Y ðXÞ, i.e., no poly-
nomial division is needed to obtain the remainder V ðXÞ.
If y * w, we then need a polynomial division that
requires a loop of y% wþ 1 iterations to obtain the
remainder V ðXÞ (see [8, p. 421]). To summarize, the
polynomial “long division” for computing RWðXÞ Y ðXÞ½ '
requires a loop of maxð0; y% wþ 1Þ iterations.

2.2 Two CRC Algorithms

From (4), we have

PiðXÞ ¼ RMðXÞ ðPi%1ðXÞ þQiðXÞXh%sÞXs
! "

ð5Þ

if s < h, and

PiðXÞ ¼ RMðXÞ ðPi%1ðXÞXs%h þQiðXÞÞXh
! "

ð6Þ

if s * h. The CRC algorithms based on (5) and (6), called
Algorithms 1 and 2, are shown in Figs. 1 and 2, respectively.

2.3 Two Alternative CRC Algorithms

We now present two alternative CRC algorithms, which
will be applied to our fast CRCs (see Section 3).

Case 1: s < h. The CRC check polynomial PjðXÞ for the
partial input message UjðXÞ can be split into two parts as

PjðXÞ ¼ ðPj;1ðXÞ; Pj;2ðXÞÞ ¼ Pj;1ðXÞXh%s þ Pj;2ðXÞ; ð7Þ

where Pj;1ðXÞ and Pj;2ðXÞ are polynomials with
degreeðPj;1ðXÞÞ < s and degreeðPj;2ðXÞÞ < h% s. That is,
Pj;1ðXÞ and Pj;2ðXÞ are the s left-hand bits and ðh% sÞ
right-hand bits of PjðXÞ, respectively. Substituting (7) into
(4), we have

PiðXÞ ¼ RMðXÞ
!
ðPi%1;1ðXÞXh%s þ Pi%1;2ðXÞÞXs

"

þ RMðXÞ
!
QiðXÞXh

"

¼ RMðXÞ
!#
Pi%1;1ðXÞ þQiðXÞ

$
Xh

"

þ RMðXÞ
!
Pi%1;2ðXÞXs

"
:

Because degreeðPi%1;2ðXÞXsÞ < h ¼ degreeðMðXÞÞ, we have
RMðXÞ½Pi%1;2ðXÞXs' ¼ Pi%1;2ðXÞXs. Thus,

PiðXÞ ¼ RMðXÞ
!
ðPi%1;1ðXÞ þQiðXÞÞXh

"
þ Pi%1;2ðXÞXs: ð8Þ

The CRC algorithm based on (8), called Algorithm 3, is
shown in Fig. 3.

Case 2: s * h. Multiplying both sides of (6) by Xs%h,
we have

PiðXÞXs%h ¼ RMðXÞ ðPi%1ðXÞXs%h þQiðXÞÞXh
! "# $

Xs%h

¼ RMðXÞXs%h ðPi%1ðXÞXs%h þQiðXÞÞXhXs%h
! "

¼ RMðXÞXs%h ðPi%1ðXÞXs%h þQiðXÞÞXs
! "

:

ð9Þ
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Fig. 1. CRC Algorithm 1 for computing the check h-tuple P from the input

s-tuples Q0; . . . ; Qn%1 (s < h).

Fig. 2. CRC Algorithm 2 for computing the check h-tuple P from the input

s-tuples Q0; . . . ; Qn%1 (s * h).

Fig. 3. CRC Algorithm 3 for computing the check h-tuple P from the input

s-tuples Q0; . . . ; Qn%1 (s < h).
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Define LjðXÞ ¼ PjðXÞXs%h. From (9), we then have

LiðXÞ ¼ RNðXÞ ðLi%1ðXÞ þQiðXÞÞXs½ '; ð10Þ

where NðXÞ ¼ MðXÞXs%h. Thus, LiðXÞ is computed from
Li%1ðXÞ and QiðXÞ.

N o t e t h a t L0ðXÞ ¼ P0ðXÞXs%h, w h e r e P0ðXÞ ¼
RMðXÞ Q0ðXÞXh

! "
. We then have

L0ðXÞ ¼ ðRMðXÞ Q0ðXÞXh
! "

ÞXs%h

¼ RMðXÞXs%h Q0ðXÞXhXs%h
! "

¼ RNðXÞ Q0ðXÞXs½ ':

BecauseLiðXÞ ¼ PiðXÞXs%h, the termPiðXÞ is obtainedby
shifting LiðXÞ to the right by ðs% hÞ bits. Note that
degreeðLiðXÞÞ < s.Wewill show inRemark 2 that computing
PiðXÞvia (10) is slightly faster thanvia (6). TheCRCalgorithm
based on (10), called Algorithm 4, is shown in Fig. 4.

Remark 2. Suppose that s * h. The checkpolynomialP ðXÞ ¼
Pn%1ðXÞ ¼ RMðXÞ½Un%1ðXÞXh' can then be computed by
Algorithm 2 (Fig. 2) or by Algorithm 4 (Fig. 4). We now
show that, for bitwise implementation, Algorithm 4 is
slightly faster than Algorithm 2. By comparing these two
algorithms, we observe the following. First, the computa-
tion of RMðXÞ½AðXÞXh' (Fig. 2) and the computation of
RNðXÞ½AðXÞXs' (Fig. 4) have the same complexity, because
each requires s iterations (by Remark 1). Next, the factor
Xs%h at line 4 of Fig. 2 disappears from line 4 of Fig. 4.
Finally, one extra operation is required at line 7 of Fig. 4 to
extract the h left-hand bits of the final BðXÞ. The above
observations imply that Algorithm 4 requires n% 1 fewer
operations than Algorithm 2. Thus, for bitwise implemen-
tation, we will use Algorithm 4 when s * h.

2.4 Basic CRC Algorithms

Given an input message UðXÞ and a generator polynomial
MðXÞ of degree h, Algorithms 1-4 produce the same CRC
check tuple P ðXÞ. That is, they are four different ways for
accomplishing the same thing. The main difference among
these algorithms is how the input message is divided into
s-tuples QiðXÞ. Algorithms 1 and 3 are for s < h, whereas
Algorithms 2 and 4 are for s * h. As shown later, CRC
speed depends on the choice of s. For flexibility, we allow
the possibility that the same CRC is used by computers that
have different architectures and capabilities. For example,
one computer can choose a value of s for encoding a
message to transmit to another computer (with different

capabilities), which can choose a different value of s for
detecting the errors in the received message.

The above CRC algorithms require polynomial divisions.
In particular, Algorithm 1 requires the polynomial division
RMðXÞ½AðXÞXs', Algorithms 2 and 3 require the polynomial
division RMðXÞ½AðXÞXh', and Algorithm 4 requires the
polynomial division RNðXÞ½AðXÞXs'. To simplify the pre-
sentation, we will use the single notation BðXÞ to denote all
these polynomial divisions, i.e., we define

BðXÞ ¼
RMðXÞ½AðXÞXs' ðAlgorithm 1Þ;
RMðXÞ½AðXÞXh' ðAlgorithms 2 and 3Þ;
RNðXÞ½AðXÞXs' ðAlgorithm 4Þ;

8
<

: ð11Þ

where NðXÞ ¼ MðXÞXs%h. Note that degreeðAðXÞÞ < h in
Algorithm 1, and degreeðAðXÞÞ < s in Algorithms 2-4. As
seen in Figs. 1-4, CRC computation using any of the above
four algorithms requires the computation of BðXÞ for
n times.

A known technique for computing BðXÞ is to use the
polynomial long division algorithm mentioned in Remark 1.
For example, consider Algorithms 2 and 3. We then have
BðXÞ ¼ RMðXÞ½AðXÞXh', where degreeðAðXÞÞ < s. Because
degreeðAðXÞXhÞ ) sþ h% 1 and degreeðMðXÞÞ ¼ h, by Re-
mark 1, BðXÞ can be computed via the polynomial long
division that requires a loop of s iterations. Similarly, it can
be shown that computing BðXÞ in Algorithms 1 and 4 also
requires a loop of s iterations. That is, the computational
complexity for computing BðXÞ is OðsÞ.
Definition 1. The technique for computing the polynomial BðXÞ

as given in (11) is called the "basic" technique. Using the
polynomial long division, BðXÞ can be computed in
s iterations. An algorithm (or a CRC) is basic if it uses the
basic technique for computing BðXÞ.

3 FAST CRCS

Recall that we are given an input message Un%1ðXÞ ¼
ðQ0ðXÞ; Q1ðXÞ; . . . ; Qn%1ðXÞÞ, where QiðXÞ is an s-tuple. We
protect this message by an h-bit CRC generated by a
polynomial MðXÞ of degree h. The check h-tuple

P ðXÞ ¼ Pn%1ðXÞ ¼ RMðXÞ Un%1ðXÞXh
! "

can be computed by Algorithm 1 or 3 (if s < h), or by
Algorithm 2 or 4 (if s * h). We emphasize that each of these
algorithms requires the calculation of BðXÞ defined in (11),
which involves the polynomial division.

3.1 Fast h-Bit CRCs

Our goal is to find some CRCs that have fast implementa-
tion, i.e., to find a new family of generator polynomials
MðXÞ for CRCs that have low complexity. Recall that the
CRC algorithms (Figs. 1-4) depend on the term BðXÞ.
Computation of BðXÞ is also the most expensive step in the
algorithms. Thus, finding fast CRCs requires finding the
polynomials MðXÞ that yield fast computation of BðXÞ.

The first technique for computing BðXÞ is the basic
technique in Definition 1. Using the polynomial division,
we can compute BðXÞ by a loop of s iterations. In the
following, we present the second technique, called the new
technique, for computing BðXÞ. While the new technique is
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s-tuples Q0; . . . ; Qn%1 (s * h).

Authorized licensed use limited to: NRL. Downloaded on August 28, 2009 at 15:47 from IEEE Xplore.  Restrictions apply. 



applicable to any generator polynomial MðXÞ, it is more
effective for some special CRC generator polynomials,
called the fast polynomials. Recall that the basic CRCs can
use Algorithm 1 or 3 (if s < h), or by Algorithm 2 or 4 (if
s * h). However, as seen in the following, the fast CRCs use
only Algorithms 3 (for s < h) and 4 (for s * h) for their
bitwise implementation.

We now introduce a new family of CRCs, which are
generated by the following polynomials

FhðXÞ ¼ Xh þX2 þX þ 1; ð12Þ

for all h * 4. We ignore the case h ¼ 3, which yields the
trivial repetition code fð0000Þ; ð1111Þg. We call FhðXÞ the
“fast polynomial,” which can be factored into

Xh þX2 þX þ 1 ¼ ðX þ 1ÞGh%1ðXÞ;

where

GmðXÞ ¼ Xm þXm%1 þ ( ( ( þX3 þX2 þ 1; ð13Þ

i.e., GmðXÞ includes all the terms except X. At first, it is not
clear why this particular polynomial FhðXÞ will speed up
the computation of BðXÞ. We now introduce a technique
that is applied to FhðXÞ to yield fast computation of BðXÞ.

By considering Algorithms 3 and 4, we have from (11)

BðXÞ ¼ RMðXÞ AðXÞXh
! "

if s < h;
RNðXÞ AðXÞXs½ ' if s * h;

%
ð14Þ

where NðXÞ ¼ MðXÞXs%h, and AðXÞ is a polynomial of
degree less than s. We now transform BðXÞ into a new form
that will be used by the fast CRCs. First, note that

RMðXÞ AðXÞðXh þMðXÞÞ
! "

¼ RMðXÞ AðXÞXh
! "

þRMðXÞ AðXÞMðXÞ½ '
¼ RMðXÞ AðXÞXh

! "

because RMðXÞ AðXÞMðXÞ½ ' ¼ 0. Similarly, we have

RNðXÞ AðXÞðXs þNðXÞÞ½ ' ¼ RNðXÞ AðXÞXs½ ':

Thus, (14) becomes

BðXÞ ¼ RMðXÞ AðXÞðXh þMðXÞÞ
! "

if s < h;
RNðXÞ AðXÞðXs þNðXÞÞ½ ' if s * h;

%
ð15Þ

where NðXÞ ¼ MðXÞXs%h.

Definition 2. Using Algorithms 3 and 4, the technique (15) for
computing the polynomial BðXÞ is called the "new"
technique. The CRC that is generated by the fast polynomial
FhðXÞ ¼ Xh þX2 þX þ 1 and uses the new technique for
computing BðXÞ is called the fast h-bit CRC.

Theorem 1. Using Algorithms 3 and 4, the polynomial BðXÞ for
the fast CRC generated by FhðXÞ ¼ Xh þX2 þX þ 1 is
given by

BðXÞ ¼ RFhðXÞ AðXÞðX2 þX þ 1Þ½ ' if s < h;
RNðXÞ AðXÞXs%hðX2 þX þ 1Þ

! "
if s * h;

%
ð16Þ

where NðXÞ ¼ FhðXÞXs%h, and AðXÞ is a polynomial of
degree less than s. Further, using the polynomial division,
BðXÞ can be computed with maxð0; s% hþ 2Þ iterations.

Proof. Relation (16) follows by using (15) with MðXÞ ¼
FhðXÞ and NðXÞ ¼ FhðXÞXs%h. First, suppose that
s < h. Then, BðXÞ ¼ RFhðXÞ AðXÞðX2 þX þ 1Þ½ '. Because
degreeðFhðXÞÞ ¼ h a n d degreeðAðXÞðX2 þX þ 1ÞÞ <
sþ 2, from Remark 1, BðXÞ can be computed with
maxð0; s% hþ 2Þ iterations. Next, suppose that s * h.
Then, BðXÞ ¼ RNðXÞ AðXÞXs%hðX2 þX þ 1Þ

! "
. Because

degreeðNðXÞÞ ¼ s and degreeðAðXÞXs%hðX2 þX þ 1ÞÞ <
2s% hþ 2, Remark 1 implies that BðXÞ can also be
computed with maxð0; s% hþ 2Þ iterations. tu

Let us briefly compare the computational complexity of
BðXÞ for 1) the basic h-bit CRC generated by MðXÞ and
2) the fast h-bit CRC generated by FhðXÞ. For the basic
CRC, by Definition 1, BðXÞ is computed via a loop of
s iterations, regardless of the form of MðXÞ. However, for
the fast CRC, by Theorem 1, BðXÞ is computed via a loop of
only maxð0; s% hþ 2Þ iterations. Thus, the fast CRC is
much faster than the basic CRC if s is chosen such that
s% hþ 2 is much small than s. Further, if sþ 1 < h, then
maxð0; s% hþ 2Þ ¼ 0 and BðXÞ ¼ AðXÞðX2 þX þ 1Þ, i.e.,
the polynomial division is eliminated. Section 4 presents
CRC software complexity in more detail.

We emphasize that fast CRC denotes a CRC that meets
the following two conditions: 1) the CRC is generated by the
fast polynomial FhðXÞ ¼ Xh þX2 þX þ 1, and 2) the
polynomial BðXÞ is computed via Theorem 1 by applying
the new technique (15) to FhðXÞ. That is, fast CRC refers to a
CRC that is generated by a specific polynomial and is
implemented by a specific technique. Note that a CRC that
meets only one of the above two conditions may not have
any speed advantage over a basic CRC. For example,
suppose that, instead of the new technique (15), the basic
technique (in Definition 1) is applied to the CRC generated
by the fast polynomial FhðXÞ. This CRC is then not different
from a basic CRC in terms of computational complexity.
Application of the new technique to polynomials other than
FhðXÞ is considered in [19, Appendix C].

To summarize, the fast h-bit CRC is generated by
FhðXÞ ¼ Xh þX2 þX þ 1. Under bitwise implementation,
the fast CRC uses Algorithm 3 if s < h and Algorithm 4 if
s * h. The term BðXÞ in these algorithms is given in
Theorem 1.

3.2 A Fast 16-Bit CRC
We now consider the important case h ¼ 16. Many CRCs
(as well as weaker checksums) used in practice have
16 check bits, e.g., the CRC-16 and CRC-CCITT mentioned
in Section 1. With a small amount of overhead, these CRCs
can have length up to 215 % 1 bits + 4;096 bytes. Our goal
here is to present a concrete example of a new 16-bit CRC
that is not only much faster than but also as good as
existing 16-bit CRCs.

Our new 16-bit CRC is generated by

F16ðXÞ ¼ X16 þX2 þX þ 1; ð17Þ

which can be factored into

F16ðXÞ ¼ ðX þ 1ÞG15ðXÞ;

where

G15ðXÞ ¼ X15 þX14 þ ( ( ( þX3 þX2 þ 1:
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It can be shown that G15ðXÞ is a primitive polynomial, i.e.,
F16ðXÞ is a product of X þ 1 and a primitive polynomial
(however, as seen later, this is not true for many values of h).
Thus, this fast 16-bit CRC also has length up to 215 % 1 bits.
Although the polynomial (17) is different from the generator
polynomials for existing 16-bit CRCs, it does generate a CRC
that has the same guaranteed error-detecting capability as
existing 16-bit CRCs. From Theorem 1, we have

BðXÞ ¼ RF16ðXÞ½AðXÞðX2 þX þ 1Þ' if s < 16;
RNðXÞ½AðXÞXs%16ðX2 þX þ 1Þ' if s * 16;

%

where NðXÞ ¼ F16ðXÞXs%16.
In the following, we consider two cases: s ¼ 8 and

s ¼ 16. First, assume that s ¼ 8, i.e., the input message is
organized in 8-bit bytes. Because s < 16, we have BðXÞ ¼
RF16ðXÞ AðXÞðX2 þX þ 1Þ½ '. Because degreeðAðXÞÞ < s ¼ 8,
we have degreeðAðXÞðX2 þX þ 1ÞÞ < 10, which is smaller
than degreeðF16ðXÞÞ ¼ 16. From Remark 1, we have

BðXÞ ¼ AðXÞðX2 þX þ 1Þ
¼ AðXÞX2 þAðXÞX þAðXÞ;

i.e., BðXÞ is simply the sum of AðXÞ and its translations.
Thus, computing BðXÞ via the new technique requires no
polynomial division. In contrast, computing BðXÞ via the
basic technique requires the polynomial division that has a
loop of s ¼ 8 iterations (see Definition 1).

Next, assume that s ¼ h ¼ 16, i.e., the input message is
organized in 16-tuples. Because s ¼ 16, we have
degreeðAðXÞÞ < 16 a n d degreeðAðXÞðX2 þX þ 1ÞÞ < 18.
Thus, by Remark 1, BðXÞ is computed by polynomial
division that has a loop of two iterations. This contrasts
with computing BðXÞ via the basic technique, which
requires a loop of s ¼ 16 iterations (see Definition 1). Thus,
the loop iteration count of our new technique is less than
that of the basic technique by the factor of 16=2 ¼ 8.

To summarize, when the input message is organized in
s-tuples, it is possible to have a fast 16-bit CRC that requires
no polynomial division (when s ¼ 8), or that requires the
polynomial division that has only two loop iterations (when
s ¼ 16). Further, this fast 16-bit CRC has the same guaran-
teed error-detecting capability as existing 16-bit CRCs.

When computing BðXÞ via the new technique, although
the case s ¼ 16 requires more loop iterations than the case
s ¼ 8, we will see later in Section 4 that the case s ¼ 16 has
lower overall computational complexity (i.e., lower overall
operation count per input byte). This is because, when
s ¼ 16, there is no need to compute Pj;1ðXÞ and Pj;2ðXÞ as
defined in (7). Further, the overhead processing cost per
input byte when s ¼ 16 is lower than when s ¼ 8. The
C programs for the fast 16-bit CRC are shown in Fig. 8 and
in [19, Appendix A, Fig. 12].

3.3 Error-Detection Capability of Fast CRCs
Recall that the h-bit CRC generated by MðXÞ given in (1)
has minimum distance d ¼ 4 if its total bit length ) 2h%1 % 1.
We define the maximum length of an error-detection code to
be the total bit length at or below which its minimum
distance is d * 3, i.e., beyond which its minimum distance
will reduce to d ¼ 2. Thus, the maximum length of the h-bit
CRC generated by (1) is 2h%1 % 1 bits. In the following, we

derive the maximum length of the fast CRCs, which is
based on polynomial periodicity.

By definition, the period of a polynomial GðXÞ is the
smallest positive integer i such that RGðXÞ X

i½ ' ¼ 1. In
particular, if GðXÞ is the product of X þ 1 and a primitive
polynomial of degree h% 1, then it can be shown that GðXÞ
has period 2h%1 % 1. Note that some polynomials, such as
X2, do not have periods.

The period of the fast polynomial FhðXÞ ¼ Xh þX2 þ
X þ 1 can be computed directly from definition (for small h)
or from the technique in [1, Section 6.2]. The periods of
FhðXÞ; h * 4, are shown in Fig. 5. The following theorems,
which are slight variations of well-known results from
cyclic codes [10, Chapter 4], show that the maximum length
of a CRC equals the period of its generator polynomial.

Theorem 2. Let C be a CRC generated by a polynomial MðXÞ of
degree h * 3. Assume that X is not a factor of MðXÞ. Let nb
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Fig. 5. The period of FhðXÞ ¼ Xh þX2 þX þ 1, which equals the

maximum length of the fast h-bit CRC generated by FhðXÞ.
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and d be the bit length and minimum distance of C,

respectively. We then have

1. d * 3 if nb ) period of MðXÞ.
2. d ¼ 2 if nb > period of MðXÞ.
3. C detects all error bursts of length up to h bits, i.e.,

b ¼ h.

Proof. Let t be the period of MðXÞ. We must have t * h. By
definition, each codeword of C has the form

V ðXÞ ¼ UðXÞXh þ P ðXÞ;

where UðXÞ is the polynomial representing the input
message, and P ðXÞ is the check polynomial. Because
P ðXÞ ¼ RMðXÞ UðXÞXh

! "
, we have

UðXÞXh ¼ KðXÞMðXÞ þ P ðXÞ;

for some polynomial KðXÞ. Thus, we have

V ðXÞ ¼ UðXÞXh þ P ðXÞ ¼ KðXÞMðXÞ;

i.e., C is a linear code. If d ¼ 1, then Xi ¼ KðXÞMðXÞ, for
some i. This implies that MðXÞ ¼ Xj for some j, which
contradicts our assumption that X is not a factor of
MðXÞ. Thus, d * 2.

1. Wenowprove, by contradiction, the statement d *
3 if nb ) period ofMðXÞ. Thus, suppose that there
is a codeword V ðXÞwith length nb ) t and weight
2. Then, V ðXÞ ¼ Xj þXi for some i and j such that
nb > j > i * 0. Thus, V ðXÞ ¼ XiðXj%i þ 1Þ.

We also have V ðXÞ ¼ KðXÞMðXÞ for some
polynomial KðXÞ. Because X is not a factor of
MðXÞ by assumption,MðXÞmust divideXj%i þ 1,
i.e., RMðXÞ X

j%i½ ' ¼ 1. Thus, j% i * t ¼ period of
MðXÞ. Then, j * t * nb, which contradicts the
condition nb > j. Thus, all the codewords of length
nb ) t must have weight * 3, i.e., d * 3.

2. We construct a codeword with length > t and
weight 2 as follows: Let UðXÞ ¼ Xt%h. Then,
P ðXÞ ¼ RMðXÞ UðXÞXh

! "
¼ RMðXÞ X

t½ '. We have
P ðXÞ ¼ 1 because t is the period of MðXÞ. Thus,
the codeword V ðXÞ ¼ UðXÞXh þ P ðXÞ ¼ Xt þ 1
has length tþ 1 and weight 2. That is, d ¼ 2 if
nb > t.

3. The fact that C detects all error bursts of length up
to h bits (i.e., b ¼ h) is well known [10]. tu

Theorem 3. Let C be the CRC generated by the fast polynomial

FhðXÞ ¼ Xh þX2 þX þ 1. Let nb and d be the bit length

and minimum distance of C, respectively. We then have

1. d ¼ 4 if nb ) period of FhðXÞ.
2. d ¼ 2 if nb > period of FhðXÞ.
3. C detects all error bursts of length up to h bits, i.e.,

b ¼ h.

Proof. Let t be the period of FhðXÞ. From the proof of
Theorem 2, every codeword of C has the form V ðXÞ ¼
KðXÞðXh þX2 þX þ 1Þ for some polynomial KðXÞ.
Thus, the codewords ofC have evenweight, i.e., d is even.

Suppose now that the input message is UðXÞ ¼ 1.
Then, P ðXÞ ¼ RFhðXÞ Xh

! "
¼ X2 þX þ 1, which implies

V ðXÞ ¼ UðXÞXh þ P ðXÞ ¼ Xh þX2 þX þ 1. That is, the
codeword V ðXÞ has weight 4. Thus, d is either 2 or 4.
From Theorem 2.1, we must have d ¼ 4 if nb ) t. From
Theorem 2.2, we must have d ¼ 2 if nb > t. The fact that
C detects all error bursts of length up to h bits is well
known [10]. tu
Recall that the maximum length of the h-bit CRC that is

generated by MðXÞ given in (1), which is the product of
X þ 1 and a primitive polynomial of degree h% 1, is 2h%1 % 1.
Fig. 5 shows that themaximum length of the fast h-bit CRC is
also 2h%1 % 1 in many important cases, namely when
h ¼ 8; 16; 24; 48; 64; 128. In fact, FhðXÞ ¼ Xh þX2 þX þ 1 is
also the product ofX þ 1 and a primitive polynomial at these
values of h, i.e., the polynomial Gh%1ðXÞ in (13) is primitive
when h ¼ 8; 16; 24; 48; 64; 128.

Fig. 5 also shows that the maximum lengths of many fast
h-bit CRCs are substantially less than the upper bound
2h%1 % 1 (e.g., when h ¼ 12 and h ¼ 32). However, in [19,
Appendix C], we apply our new technique to more general
generator polynomials to yield other fast CRCs whose
maximum lengths can approach the upper bound.

4 CRC SOFTWARE COMPLEXITY

We now analyze and compare CRC software complexity.
Software complexity of an algorithm refers to the number of
operations (i.e., operation count) used to implement the
algorithm.Ourgoal in this paper is to compute theCRCcheck
h-tuple P ðXÞ for an input message that consists of n tuples
Q0ðXÞ; Q1ðXÞ; . . . ; Qn%1ðXÞ. Each tupleQiðXÞ has s bits. This
CRC can be either a basic CRC generated by a polynomial
MðXÞ of degree h, or the fast CRC generated by
FhðXÞ ¼ Xh þX2 þX þ 1. For bitwise implementation,
while Algorithm 1, 2, 3, or 4 can be used for the basic CRC,
only Algorithm 3 or 4 are used for the fast CRC. The check
tuple P ðXÞ is computed by using a loop that computesBðXÞ
for n times, where BðXÞ is given in Definition 1 for the basic
CRC and in Theorem 1 for the fast CRC.

In this section, we compute eb and ef , which denote the
software operation counts per input byte required for
computing the check tuple P ðXÞ for the basic CRC and the
fast CRC, respectively. These operation counts will then be
used to compare the complexity among our fast CRCs, the
basic CRCs, the other fast CRCs in [4], and the block-parity
checksum. An error-detection code is said to be “faster”
than another if, for a similar level of memory requirement, it
has lower software complexity.

4.1 General Complexity Analysis

We now provide the complexity analysis for the important
case s ¼ h for the basic CRC and the fast CRC (other cases
can be analyzed similarly). Both Algorithms 2 and 4 (shown
in Figs. 2 and 4) then reduce to Fig. 6. Here, we have

BðXÞ ¼ RMðXÞ½AðXÞXs' ð18Þ

for the basic CRC (see Definition 1), and

BðXÞ ¼ RFhðXÞ½AðXÞðX2 þX þ 1Þ' ð19Þ
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for the fast CRC (see Theorem 1), where AðXÞ is a
polynomial of degree less than s. Note that different
CRC algorithms refer to different techniques for computing
BðXÞ. In particular, a CRC algorithm is called table lookup or
bitwise, depending on whether the term BðXÞ in the
algorithm is computed with or without table lookup. The
bitwise technique is presented in this section. The table-
lookup technique is presented in [19, Appendix A].

Remark 3. The term BðXÞ ¼ RMðXÞ AðXÞXs½ ' in (18) can be
computed as follows: First, we write AðXÞXs ¼
ð( ( ( ðAðXÞXÞ ( ( (ÞX. Thus, BðXÞ can be computed in
s iterations via the following pseudocode:

where RM AX½ ' is computed by

RM AX½ ' ¼ AX þM if msbðAÞ ¼ 1;
AX if msbðAÞ ¼ 0;

%
ð20Þ

where msb(A) denotes the most significant bit of A. The
term RM AX½ ' in (20) can also be computed by using a
table T ½ ' of only two entries defined by T ½0' ¼ 0 and
T ½1' ¼ M. We then have

RM AX½ ' ¼ AX þ T ½msbðAÞ': ð21Þ

Let u be the operation count required for computing
RMðXÞ AðXÞX½ '. Using Remark 3, the operation count
required for computing BðXÞ in (18) for the basic CRC is
then sðuþ lsÞ, where ls denotes the operation count for the
loop overhead shown at line 1 of the pseudocode in
Remark 3 (in particular, ls ¼ 0 if loop unrolling is used).

Let us now consider the term BðXÞ in (19) for the fast
CRC. We have

BðXÞ ¼ RFhðXÞ AðXÞX2
! "

þ RFhðXÞ AðXÞX½ ' þAðXÞ
¼ RFhðXÞ B1ðXÞX½ ' þB1ðXÞ þAðXÞ;

ð22Þ

where B1ðXÞ ¼ RFhðXÞ AðXÞX½ ', which has operation count
u. After B1ðXÞ is computed, RFhðXÞ B1ðXÞX½ ' also has
operation count u. There are also two binary additions
(i.e., two XOR operations) in (22). Thus, the operation count
required for computing BðXÞ in (22) for the fast CRC is
2uþ 2.

Let us now determine the total operation counts tb and
tf for computing the check tuple P ðXÞ for the basic CRC
and the fast CRC, respectively. The CRC algorithm for
computing P ðXÞ, which is shown in Fig. 6, has a loop of
n iterations. In addition to the operation count for BðXÞ,
there is also one addition as indicated in line 4 of Fig. 6. Let
ln be the operation count for the loop overhead shown at
line 2 of Fig. 6. We then have

tb ¼ n½ln þ 1þ sðuþ lsÞ'; ð23Þ

tf ¼ nðln þ 3þ 2uÞ: ð24Þ

The basic CRC and the fast CRC require tb and
tf operations, respectively, to compute the check tuple
P ðXÞ for the input message that has ns bits, i.e., tb=ðnsÞ and
tf=ðnsÞ operations are required per input bit. Recall that eb
and ef denote the operation counts per input 8-bit byte
required for computing the check tuple P ðXÞ, for the basic
CRC and the fast CRC, respectively. We then have eb ¼
8tb=ðnsÞ and ef ¼ 8tf=ðnsÞ. Using (23) and (24), we have

eb ¼
8tb
ns

¼ 8½ln þ 1þ sðuþ lsÞ'
s

; ð25Þ

ef ¼ 8tf
ns

¼ 8ðln þ 3þ 2uÞ
s

; ð26Þ

eb
ef

¼ tb
tf

¼ ln þ 1þ sðuþ lsÞ
ln þ 3þ 2u

: ð27Þ

Simple estimates are tb + nsu [by ignoring ln þ 1 and ls in
(23)] and tf + n2u [by ignoring ln þ 3 in (24)]. Substituting
these into (27), we have

eb
ef

¼ tb
tf

+ s

2
¼ h

2
; ð28Þ

i.e., the fast CRC is approximately h=2 times faster than the
basic CRC.

4.2 CRC Complexity Under C Implementation

Figs. 7 and 8 show the C programs for the basic CRC and
the fast CRC, respectively, which are based on Fig. 6
ðs ¼ hÞ. For illustration, we let s ¼ 16 in the figures, and
MðXÞ ¼ X16 þX15 þX2 þ 1 (which generates the CRC-16)
in Fig. 7. However, the following results are also valid for
other values of s and other generator polynomials.

We use the following two rules to count the number of
software operations [19, Appendix A]: (R1) The operation
count of a program statement is defined as the number of
operations, other than the equal sign (¼ ), that appear in that
statement. (R2) For an if-statement, we average the
operation count of the if-statement and the operation count
of its alternative (e.g., an else-statement).

The nonzero operation count for each C program
statement is recorded between the comment quotes
(= , ,=). The programs show that ln ¼ ls ¼ 2. Using (20) of
Remark 3, we have u ¼ 3 if msbðAÞ ¼ 0 and u ¼ 4 if
msbðAÞ ¼ 1. Using rule (R2), we have u ¼ 3:5 (which is
the average of 3 and 4), as recorded in Figs. 7 and 8.
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Fig. 6. CRC algorithm (s ¼ h).
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Substituting these values of ln; ls, and u into (25) and (26),

we obtain eb ¼ 8ð3þ 5:5sÞ=s and ef ¼ 96=s. Thus, we have

eb
ef

¼ 8ð3þ 5:5hÞ
96

¼ 0:25þ 0:458h; ð29Þ

which is within 10 percent of (28). For example, let

s ¼ h ¼ 16. T h e n , eb ¼ 8ð3þ 5:5- 16Þ=16 ¼ 45:5 a n d

ef ¼ 96=16 ¼ 6. Thus, eb=ef ¼ 45:5=6 ¼ 7:58, i.e., the fast

CRC is 7.58 times “faster” than the basic CRC. Further, if

s ¼ h ¼ 64, then ef ¼ 1:50; eb ¼ 44:4, and eb=ef ¼ 29:6, i.e.,

the fast 64-bit CRC is 29.6 times faster than the basic

64-bit CRC. These results are recorded in Fig. 9.
We now briefly present the complexity results for

s; h 2 f8; 16; 32; 64g, but without the restriction s ¼ h. From

(37) and (39) of [19, Appendix A], we have

eb ¼
8ð4þ 5:5sÞ=s if s < h;
8ð3þ 5:5sÞ=s if s * h;

%
ð30Þ

ef ¼

80=s if s < h% 1;
100=s if s ¼ h% 1;
96=s if s ¼ h;
8½12þ 5:5ðs% hÞ'=s if s > h:

8
>><

>>:
ð31Þ

As an example, consider a basic 16-bit CRC and the fast
16-bit CRC, which are used to protect an input message
consisting of 8-bit bytes, i.e., h ¼ 16 and s ¼ 8. From the
above formulas, we have eb ¼ 8ð4þ 5:5- 8Þ=8 ¼ 48 and
ef ¼ 80=8 ¼ 10. That is, the basic CRC and the fast CRC use
48 and 10 operations per input byte, respectively, to compute
their check tuples. Thus, we have eb=ef ¼ 48=10 ¼ 4:8, i.e.,
the fast CRC is 4.8 times faster than the basic CRC. The
values of eb; ef , and eb=ef for various ðh; sÞ pairs are recorded
in Fig. 9. The results show that the complexity of the basic
CRCs is rather insensitive to the values of h and s, namely eb
varies from 44.4 to 48 (the variation is only 8.1 percent). In
contrast, the complexity of the fast CRCs is very sensitive to
the values of h and s, namely ef varies from 1.50 up to 40.0.

For a given h, recall from Section 2.1 that we are free to
choose the value of s. The complexity of the basic CRCs is
rather insensitive to the choice of s. As seen in Fig. 9, when
h 2 f8; 16; 32; 64g, the complexity of the fast CRCs is fairly
low when s < h, and is minimized when s ¼ h. When
h 62 f8; 16; 32; 64g, it is shown in [19, Appendix A] that the
complexity of the fast CRCs is minimized (i.e., ef is
minimized) either at s ¼ h or at s ¼ h% 2.

To summarize, we introduce the new family of CRC
generator polynomials that have the explicit form
FhðXÞ ¼ Xh þX2 þX þ 1, for all h * 4, as well as the
new technique (15) for their implementation. This family
includes F8ðXÞ, which generates the ATM CRC-8. For this
particular CRC, by choosing s ¼ h ¼ 8, our new technique
provides a new bitwise implementation that is 3.92 times
faster than the basic bitwise technique (see Fig. 9).

Remark 4. There exist well-known techniques for reducing
the operation counts used in CRC implementation.
An example is the use of table lookup (at the cost of
increased memory and cache usage), which is presented
in [19, Appendix A]. Note that, to keep our C programs
compact, readable, and general, we ignore software
optimization techniques (such as loop unrolling) in our
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Fig. 8. C program for the fast CRC (s ¼ h).

Fig. 9. Software complexity for the basic CRCs (eb) and the fast

CRCs (ef ).

Fig. 7. C program for the basic CRC (s ¼ h).
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C programs. However, these techniques certainly can be
used to reduce the operation counts in the programs. For
example, if loop unrolling is used (at the cost of code size
expansion) in the inner for-loop of the C program in
Fig. 7, then the index increment and the end-of-loop test
are eliminated, i.e., the loop overhead ls is reduced from
ls ¼ 2 to ls ¼ 0. With loop unrolling (i.e., ls ¼ 0), it can be
shown that (30) and (31) reduce to

eb ¼
8ð4þ 3:5sÞ=s if s < h;
8ð3þ 3:5sÞ=s if s * h;

%

ef ¼

80=s if s < h% 1;
100=s if s ¼ h% 1;
96=s if s ¼ h;
8½12þ 3:5ðs% hÞ'=s if s > h:

8
>><

>>:

4.3 Other Techniques for Error-Detection Codes

The complexity results for the basic CRC algorithm,
which are rather insensitive to the input parameters s; h,
and the form of the generator polynomial MðXÞ, are
shown in Fig. 9. In particular, when h ¼ 16 and s ¼ 8, we
have eb ¼ 48 operations per input byte. Our CRC
software implementation in C for this case is shown
[19, Appendix A, Fig. 11], which is more efficient than
the one given in [2, pp. 555-556], which has 63 operations
per input byte according to rules (R1) and (R2).

There are other CRC algorithms that are much faster
than the basic algorithm. As expected, those algorithms are
effective for some particular generator polynomials. For
example, the clever “add and shift” algorithm of [4] is fast
for the CRCs generated by M1ðXÞ ¼ X32 þX31 þX8 þ 1
(for h ¼ 32) and M2ðXÞ ¼ X64 þX63 þX2 þ 1 (for h ¼ 64),
which are found by computer search [4]. According to rules
(R1) and (R2) for determining the operation counts, these
CRCs use 20 operations to process each tuple of s ¼ 32
input bits (see [4, Fig. 2]). Thus, these CRCs use five
operations per input byte. In contrast, from Fig. 9, for
s ¼ 32, our fast CRCs use only 3 and 2.5 operations per
input byte for h ¼ 32 and h ¼ 64, respectively. Thus, our
fast CRCs are faster than the above shift-and-add CRCs.
Further, our fast 64-bit CRC is even much faster when
s ¼ 64, because it uses only 1.5 operations per input byte
(see Fig. 9).

As mentioned in Section 1, alternatives to CRCs are
checksums. Although checksums are weaker than CRCs,
they can be substantially faster than CRCs. For example, let
s ¼ h and consider the block-parity checksum. The check
tuple P ðXÞ of this checksum is simply the sum of all the
input tuples, i.e., P ðXÞ ¼

Pn%1
i¼0 QiðXÞ. As shown in [19,

Section B.1], the operation count per input byte required for
computing P ðXÞ of the checksum is e ¼ 24=s. From (31), the
fast CRC has ef ¼ 96=s. Thus, ef=e ¼ 96=24 ¼ 4, i.e., the
checksum is four times faster than the fast CRC.

5 SUMMARY AND EXTENSION

Error control coding is essential for reliable transmission and
storage, and CRCs are known to be effective for error
detection. In software, an h-bit CRC is typically implemented

by dividing the input message into s-tuples (i.e., blocks of
s bits). The outputCRC check bits are obtained by recursively
carrying the polynomial division on these tuples.

Thus, the crucial part in CRC computation is the
polynomial division on s-tuples. For the basic CRCs, this
division requires s iterations, which may be expensive for
many applications. A common technique for reducing the
many steps during CRC computation is to use additional
memory in the form of table lookup. In this paper, we
introduce the fast h-bit CRCs, which are generated by
FhðXÞ ¼ Xh þX2 þX þ 1, as well as the new technique (15)
to implement them. Using our fast CRCs, the polynomial
division on s-tuples requires only maxð0; s% hþ 2Þ itera-
tions, which are much less than the s iterations required for
the basic CRCs, as long as s is chosen such that s% hþ 2 is
much smaller than s. We study the computational complex-
ity of the CRCs, which refers to the operation count per
input byte required for computing the CRC check tuples.
Our fast CRCs have low complexity and require no table
lookup. For the important case s ¼ h, the fast h-bit CRCs are
approximately h=2 times faster than the basic h-bit CRCs.

As an illustration, we implement the CRCs in C
programming language, and then study their computa-
tional complexity for the bitwise technique (i.e., without
table lookup). We show that the complexity of the fast
h-bit CRCs varies greatly with s, and is minimized either
at s ¼ h% 2 or at s ¼ h. In contrast, the complexity of the
basic h-bit CRCs varies little with s. Because modern
computers typically process information in bytes or words,
we also present the complexity results when s is restricted
to multiples of byte size and word size.

In [19], we provide several extensions to the baseline ideas
presented in this paper. In particular, we present the results
for CRC table-lookup techniques, which illustrate tradeoffs
between computational complexity and memory require-
ment. We show that when s ¼ h, the fast CRCs can be made
20 percent faster by using tables of only four entries. We
apply our new technique to someweaker CRCs to yield even
faster CRCs, i.e., there are tradeoffs between speed and
capability. Further, we use the new technique to construct
some fast extended Hamming perfect codes. In particular,
we construct h-bit non-CRC codes that not only have low
complexity but also have the following optimal properties.
They have the minimum distance d ¼ 4, the burst-error-
detecting capability b ¼ h, and the maximum code length
2h%1. We also apply the new technique to arbitrary CRCs,
and then determine the conditions under which the new
technique remains effective. In particular, the new technique
is substantially faster than the basic technique for the
CRC-64-ISO generated by X64 þX4 þX3 þX þ 1. Finally,
we show how the CRCs algorithms, which are originally
designed for sequential implementation on a single proces-
sor, can be adapted for parallel implementation on multiple
processors.
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APPENDIX A CRC SOFTWARE IMPLEMENTATION AND COMPLEXITY EVALUATION

The purpose of this appendix is to present software implementation for the CRC algorithms as well as
to evaluate their computational complexity. Software complexity of an algorithm refers to the number
of operations (i.e., operation count) used to implement the algorithm. Consider an h-bit CRC, which is
generated by a polynomial M(X) of degree h. Our goal is to compute the check h-tuple P (X) for an input
message that consists of n tuples Q0(X), Q1(X), . . . , Qn−1(X). Each tuple Qi(X) has s bits.

The CRC can be implemented by any of the 4 algorithms shown in Figs. 1-4. Although the value of h is
fixed, we are free to choose the value of s. Algorithms 1 and 3 are for s < h, whereas Algorithms 2 and 4
are for s ≥ h. One algorithm can be faster than another, depending the value of s and the form of M(X).
For example, Remark 2 shows that, for bitwise implementation, Algorithm 4 is faster than Algorithm 2
when s ≥ h. Thus, we will use Algorithm 4 for bitwise implementation when s ≥ h, as indicated in Fig. 10.
As stated in Theorem 1, Algorithm 3 must be used for the fast CRCs when s < h. Fig. 10 lists the CRC
algorithms that are used in our software implementation.

We recognize that accurate software evaluation is complicated, and requires experiments with differ-
ent processors, memory organizations, programming languages, and compilers. Other complicating factors
include programming styles and the extend the CRCs must share with (or compete against) other concur-
rent/interupting programs.

Instead of dealing with the complex issues mentioned above, which are beyond the scope of this paper, we
simply use software operation counts for our complexity evaluation. Our technique of software comparison is
as follows. We write a program (e.g., in C) for each CRC. We then use the operation count as the primary
measure of complexity, and a CRC is said to be “faster” than another if it has lower operation count.

We now determine the software complexity of the CRC algorithms, which refers to the operation count
per input message byte required for computing the check h-tuple. Let us examine Algorithms 1-4 (shown
in Figs. 1-4). For each algorithm, the check tuple P (X) is computed by using a loop that computes B(X)
for n times, where B(X) is given in Definition 1 for the basic CRC and in Theorem 1 for the fast CRC.
In addition to B(X), we also need to compute all the other terms inside the loop (which include the loop
overhead). Let r and x be the operation counts required for computing B(X) and the other terms inside the
loop, respectively. Let y be the operation count required for computing the terms outside the loop. Further,
for each algorithm, let t be the total operation count required for computing the CRC check tuple from the
input message that consists of n tuples. We then have t = (x + r)n + y.

Let e be the operation count per input byte required for computing the check h-tuple. Each byte has 8
bits. Because t is the operation count for computing the check h-tuple from the ns input message bits, we
have e = 8t/(ns) = 8[(x + r)n + y]/(ns), i.e.,

e =
8(x + r)

s
+

8y

ns
(32)

In the following, we consider h, s, and n to be independent variables, and our goal is to compute e in terms
of h, s, and n for both the basic CRCs and the fast CRCs. That is, we can write e = e(s, h, n). To compute
e, we need to determine r, x, and y, to which we add the subscripts b and f when they refer to the basic
CRCs and the fast CRCs, respectively. That is, rb, xb, yb, and eb refer to the basic CRCs, while rf , xf , yf ,
and ef refer to the fast CRCs.

We present CRC implementation with and without table lookup. Our software programs are for w-bit
computers that satisfy s ≤ w and h ≤ w (however, we allow the possibility that h + s > w). For example,
32-bit computers are for s, h ≤ 32 bits, while 64-bit computers are for s, h ≤ 64 bits (future 128-bit computers
are for s, h ≤ 128 bits). To be specific, we implement the CRC algorithms in C, which is a highly portable
general-purpose computer programming language (certainly, they can also be implemented in other computer
languages). We use the following 2 simple rules to count the number of software operations [13]:

(R1) The operation count of a program statement is defined as the number of operations, other than the
equal sign (=), that appear in that statement.
(R2) For an if-statement, we average the operation count of the if-statement and the operation count of its
alternative (e.g., an else-statement).
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Let us consider examples on how to use rule (R1). The statement C = (A<<1)∧F will count as 2
operations (<< and ∧ ). Note that “=” does not count as an operation. Next, consider the statement
for(i=0; i<n; i=i+1){ }. This implements a (null) loop of n iterations, each iteration has 2 operations
(< and +). Thus, the total operation count for this loop statement is 2n. The for-loop above is equivalent
to the while-loop i=0; while(i<n){i=i+1;} which, of course, also has 2n operations.

We now show examples about rule (R2). Suppose that K = 1, and consider the following 2 statements:
if ((A&K) != 0) C =(A<<1)∧F;
else C = A<<1;

Here, the if-statement has 4 operations (&, !=, <<, ∧), and the else-statement has 3 operations (&, !=, <<).
Thus, the above 2 statements can be considered as a single statement that has 3.5 operations (i.e., the average
of 4 and 3).

The above 2 statements are equivalent to the the following 2 statements:
C = A<<1;
if ((A&K) != 0) C = C∧F;

Here, the first statement has 1 operation, and the second statement has 2.5 operations. Thus, the 2 statements
together also have 3.5 operations as expected. Note that (A&K)∈ {0, 1}, because K = 1. Here, for simplicity,
we assume that (A&K) takes the values 0 and 1 with equal probability of 1/2. Suppose now that K = 3. We
then have(A&K)∈ {0, 1, 2, 3}. By assuming that (A&K) takes the values 0, 1, 2, and 3 with equal probability
of 1/4, the above if-statement (which has 4 operations) is executed with probability 3/4 and the else-
statement (which has 3 operations) is executed with probability 1/4. Thus, these if-else statements can be
considered as a single statement that has 4 × 3/4 + 3 × 1/4 = 3.75 operations.

bitwise table lookup
basic CRC Algo. 1 (s < h) Algo. 3 (s < h)

Algo. 4 (s ≥ h) Algo. 2 (s ≥ h)
fast CRC Algo. 3 (s < h) Algo. 3 (s < h)

Algo. 4 (s ≥ h) Algo. 2 (s ≥ h)

Fig. 10 CRC algorithms used in software implementation

Remark 5. Rules (R1) and (R2) serve as a simple technique for comparing the complexity of different CRCs,
i.e., they will be used to obtain a first-order estimation of the ratio eb/ef . These rules are intended only for
CRC algorithms that are implemented in C, and not for other types of algorithms or other programming
languages. As seen in the following, our CRC software implementation uses only a small number of elementary
C operators (namely, +, <<, >>, =, ==, !=, <, <=, &, and ∧) and C keywords (namely, char, short, int,
long, unsigned, if, else, for, while, and return). Our following C programs for the CRCs are written in a
style that is intended to be simple and straightforward. See also Remark 6.

Other techniques for counting operations are also possible. For example, consider rule (R1′), which is
defined as rule (R1), but also counts the equal sign (=) as an operation. Let e′b and e′f denote the resulting
operation counts under (R1′). We must have e′b > eb and e′f > ef . Although the difference between eb

and e′b (as well as between ef and e′f ) can be significant, the difference between the ratios eb/ef and e′b/e′f
are typically not significant. For example, let s = h = 32. From Fig. 9, we have eb = 44.8, ef = 3,
and eb/ef = 14.9. Under rule (R1′), it can be shown that e′b = 61.5, e′f = 4.25, and e′b/e′f = 14.5, i.e.,
e′b/e′f ≈ eb/ef . Note that rule (R1), which is used in this paper, is slightly simpler to use than rule (R1′).
Thus, our technique for counting software operations is reasonable for the purpose of complexity comparison,
i.e., we are more interested in the ratio eb/ef , rather than in eb and ef .

Here, for simplicity, we assign the same unit cost to each operation. A more elaborate technique would
assign different costs to different operations. However, this assignment depends on many factors (such as
computer hardware, operating system, processor architecture, and memory organization), which are outside
the focus of this paper. %&

Let us now compute x and y in (32). The computation of r is deferred to later subsections. First,
consider Fig. 11, which shows the C program for bitwise implementation of the basic CRC for the case
s < h. As indicated in Fig. 10, this program is based on Algorithm 1. In this program, we assume that
h ∈ {8, 16, 32, 64}, i.e., h is the size (in bits) of one of the natural unsigned types of C: unsigned char, unsigned
short int, unsigned int, or unsigned long int. The input is the n message s-tuples Q[0], Q[1], . . . , Q[n − 1],
and the output is the CRC check h-tuple P .

We then apply rules (R1) and (R2) to the program shown in Fig. 11 to obtain the desired operation
counts. The non-zero operation count for each program statement is recorded between the comment quotes
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(/* */). Recall that the total operation count for computing the check tuple P from the n input tuples is
tb = (xb + rb)n + yb. Here, rb is the operation count required for computing B(X), which is inside the loop
indexed by i, xb is the operation count required for computing all the other terms in the loop besides B(X),
and yb is the operation count required for computing all the terms outside the loop. From Fig. 11, we have
xb = 4 and yb = 0.

To summarize, for h ∈ {8, 16, 32, 64} and s < h, we have xb = 4 and yb = 0, which are recorded in Fig. 13.
For illustration, we let h = 16, s = 8 and M(X) = X16 + X15 + X2 + 1 (which generates the well-known
CRC-16) in Fig. 11. When h /∈ {8, 16, 32, 64} and s < h, the computational complexity is slightly higher,
namely, xb = 4 and yb = 1.

Fig. 7 shows the C program for the basic CRC when s = h. Next, consider Fig. 12, which shows the C
program for the fast CRC when h ∈ {8, 16, 32, 64} and s < h − 1. It can be shown that xf = 6 and yf = 0
for this case. Again, for illustration, we let h = 16 and s = 8 in Fig 12. Similarly, we can compute the
values of x and y for all the cases for both the basic CRCs and the fast CRCs. The results are summarized
in Fig. 13.

Using Fig. 13, the expression (32) can be simplified as follows. Let z be the ratio of the 2 terms on the
right-hand side of (32), i.e.,

z =
8(x + r)/s

(8y)/(ns)

=
(x + r)n

y

From Fig. 13, we have 0 ≤ y ≤ 1 and x ≥ 3, which implies that z ≥ (x + r)n ≥ (3 + r)n ≥ 3n. Thus,
8y/(ns) is much smaller than 8(x + r)/s, because we assume in this paper that n is not too small (i.e., we
assume that n > 4). Thus, the term 8y/(ns) can be dropped from (32). The operation count per input byte
required for computing the CRC check h-tuple then simplifies to

e =
8(x + r)

s
(33)

where x is determined from Fig. 13, which depends only on s and h, i.e., x = x(s, h). Recall that r denotes the
operation count required for computing B(X), which also depends only on s and h [see (11)], i.e., r = r(s, h).
It follows from (33) that e now also depends only on s and h, i.e., e = e(s, h). From (33), we also have

eb

ef
=

xb + rb

xf + rf

where xb and xf are given in Fig. 13. In the following, using rules (R1) and (R2), we compute rb and rf for
both the bitwise and the table-lookup techniques.

unsigned short basic_CRC (int n, unsigned char *Q)

{

int             i, j, hs, s;

unsigned short  A, B, M, K, P;

s = 8;

hs = 8;        /* hs = h-s */

M = 0x8005;    /* M = X16+X15+X2+1 */

K = 0x8000;    /* K = 2h-1, h=16 */

P = 0;

for (i=0; i<n; i=i+1)                    /* 2 */

    {

    P = P ^ (Q[i] << hs);                /* 2 */

    for (j=0; j<s; j=j+1)                /* 2 */

       {

       if ( (P&K) != 0 ) P = (P<<1) ^ F; /* 3.5 */

       else              P =  P<<1;      

       }

    }

return P;

}

Fig. 11 C program for the basic h-bit CRC (s < h)

3



IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009 NGUYEN: FAST CRCS

unsigned short fast_CRC (int n, unsigned char *Q)

{

int              i, hs, s;

unsigned short   A, B, P;

s = 8;

hs = 8;          /* hs = h-s, h = 16 */

P = 0;

for (i=0; i<n; i=i+1)          /* 2 */

    {

    A = (P>>hs) ^ Q[i];        /* 2 */

    B = (A<<2) ^ (A<<1) ^ A;   /* 4 */

    P = B ^ (P<<s);            /* 2 */

    }

return P;

}

Fig. 12 C program for the fast h-bit CRC (s < h − 1)

x y
Algo. 1 4 0 if h = 8, 16, 32, 64
(s < h) 1 if h != 8, 16, 32, 64
Algo. 2 3 if s = h 0
(s ≥ h) 4 if s > h 0
Algo. 3 6 if h = 8, 16, 32, 64 0 if h = 8, 16, 32, 64
(s < h) 7 if h != 8, 16, 32, 64 1 if h != 8, 16, 32, 64
Algo. 4 3 0 if s = h
(s ≥ h) 1 if s > h

Fig. 13 Values of x and y

A.1 CRC Software Implementation: Bitwise Technique (Without Table Lookup)

According to Fig. 10, the bitwise implementation of the the basic CRCs uses Algorithm 1 for s < h, and
Algorithm 4 for s ≥ h. From Fig. 13, we then have

xb =
{

4 if s < h
3 if s ≥ h

Substituting xb into (33), we have

eb =
{

8(4 + rb)/s if s < h
8(3 + rb)/s if s ≥ h

(34)

where rb denotes the operation count required for computing B(X) of the basic CRCs.
According to Fig. 10, the bitwise implementation of the the fast CRCs uses Algorithm 3 for s < h, and

Algorithm 4 for s ≥ h. From Fig. 13, we then have

xf =

{ 6 if s < h and h = 8, 16, 32, 64
7 if s < h and h #= 8, 16, 32, 64
3 if s ≥ h

Substituting xf into (33), we have

ef =






8(6 + rf )/s if s < h and h = 8, 16, 32, 64
8(7 + rf )/s if s < h and h #= 8, 16, 32, 64
8(3 + rf )/s if s ≥ h

(35)

where rf denotes the operation count required for computing B(X) of the fast CRCs. Both rb and rf are
computed in the following subsections.
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A.1.1 Basic CRCs

Recall that B(X) for the basic CRCs is given in Definition 1. First, consider the case s < h, and let us revisit
Fig. 11. This figure contains the loop (indexed by j) for computing B(X), which is based on Remark 3. The
figure shows that the operation count required for computing B(X) is rb = 5.5s. Next, for the case s ≥ h,
it can also be shown that rb = 5.5s (see Fig. 7). To summarize, we have

rb = 5.5s (36)

Substitute (36) into (34) we have

eb =
{

8(4 + 5.5s)/s if s < h
8(3 + 5.5s)/s if s ≥ h

(37)

Note that (36) is derived from the C programs that do not use loop unrolling (which is also the case for the
C programs presented in [2]). If loop unrolling is used, (36) reduces to rb = 3.5s.

Here, our software implementations of the basic CRCs are general, i.e., they are applicable to all generator
polynomials M(X) and to a wide range of processor architectures. For some specific generator polynomials
that have some desirable properties, alternative implementations (such as shift and add [4], and on the fly
[14, 15]) may have lower complexity. Thus, we concentrate on the general nature of the algorithms rather
than attempting to deal with specific types of generator polynomials. Also, for our C programs, we are more
concerned with their readability and less concerned with optimization techniques such as loop unrolling and
use of register variables (see Remark 4).

A.1.2 Fast CRCs

Recall that B(X) of the fast CRCs is given in Theorem 1. First, assume that s < h− 1. The C program for
this case is shown in Fig. 12, which contains the procedure for computing B(X). Applying rules (R1) and
(R2) to Fig. 12, we observe that the operation count required for computing B(X) is rf = 4. Next, assume
that s = h. The C program for this case is shown in Fig. 8, which yields rf = 9. The C programs for all the
other cases can also be written, and the resulting software complexity can also be determined. Following is
the list of the operation counts for all the cases:

rf =






4 if s < h − 1
6.5 if s = h − 1
9 if s = h
9 + 5.5(s − h) if s > h

(38)

Substituting (38) into (35), we have

ef =






80/s if s < h − 1 and h = 8, 16, 32, 64
88/s if s < h − 1 and h #= 8, 16, 32, 64
100/s if s = h − 1 and h = 8, 16, 32, 64
108/s if s = h − 1 and h #= 8, 16, 32, 64
96/s if s = h
8[12 + 5.5(s − h)]/s if s > h

(39)

The operation count per input byte ef for the fast h-bit CRC given in (39) is a function of s, which is the
size of each input tuple Qi(X). We now determine the value of s that minimizes ef . These optimal values
are denoted by s∗ and e∗f .

First, assume that h ∈ {8, 16, 32, 64}. For each h ∈ {8, 16, 32, 64}, we can search for an s ∈ {1, 2, . . . , 64}
such that ef in (39) is minimized. Our search shows that

e∗f =
{

80/(h − 2) if h = 16, 32, 64
96/h if h = 8 (40)

which is achieved when
s∗ =

{
h − 2 if h = 16, 32, 64
h if h = 8

(41)

Next, assume that h /∈ {8, 16, 32, 64}. For each h ∈ {8, 16, 32, 64}, 4 ≤ h ≤ 64, we can search for an
s ∈ {1, 2, . . . , 64} such that ef in (39) is minimized. Our search shows that
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e∗f =
{

88/(h − 2) if h > 24
96/h if 4 ≤ h ≤ 24 (42)

which is achieved when
s∗ =

{
h − 2 if h > 24
h if 4 ≤ h ≤ 24 (43)

Thus, (41) and (43) show that the complexity of the fast h-bit CRCs is minimized (i.e., ef is minimized)
at either s = h or s = h − 2, where s is the size of each input tuple Qi(X).

For example, by letting h = 16, the optimal size for each input tuple Qi(X) is s∗ = h− 2 = 14 [by (41)],
and the corresponding minimum operation count is e∗f = 80/(h − 2) = 80/14 = 5.71 [by (40)]. Information
on computers is typically organized in bytes or words. Thus, it is of interest to determine the optimal value
of ef when s is restricted to a multiple of byte size and word size, i.e., when s is a multiple of 8, 16, 32, 64.
These optimal values, which are obtained from (39), are shown in Fig. 14.

Recall that ef = ef (s, h), i.e., ef is a function of s and h. In Fig. 14, for a given h, s(opt) denotes the
value of s, 1 ≤ s ≤ 64, that minimizes ef (s, h), and the corresponding minimum ef (s, h) is denoted by e(opt)

f .
Thus, we have e(opt)

f = ef (s(opt), h) ≤ ef (s, h) for all 1 ≤ s ≤ 64. Similarly, s(byte) denotes the value of s ∈
{8, 16, 24, 32, 40, 48, 56, 64} that minimizes ef (s, h), and the corresponding minimum ef (s, h) is denoted by
e(byte)
f . Finally, s(word) denotes the value of s ∈ {8, 16, 32, 64} that minimizes ef (s, h), and the corresponding

minimum ef (s, h) is denoted by e(word)
f . For example, by letting h = 64, we have s(opt) = 62, e(opt)

f = 1.29,
s(byte) = 56, e(byte)

f = 1.43, s(word) = 64, e(word)
f = 1.50. In general, we must have e(opt)

f ≤ e(byte)
f ≤ e(word)

f .

h s(opt) s(byte) s(word)

e(opt)
f e(byte)

f e(word)
f

4 4 8 8
24.0 34.0 34.0

6 6 8 8
16.0 23.0 23.0

8 8 8 8
12.0 12.0 12.0

10 10 8 8
9.60 11.0 11.0

12 12 8 8
8.00 11.0 11.0

16 14 16 16
5.71 6.00 6.00

20 20 16 16
4.80 5.50 5.50

24 22 24 16
4.00 4.00 5.50

32 30 32 32
2.67 3.00 3.00

40 38 40 32
2.32 2.40 2.75

48 46 48 32
1.91 2.00 2.75

56 54 56 32
1.63 1.71 2.75

64 62 56 64
1.29 1.43 1.50

Fig. 14 The optimal values of s and ef for the h-bit fast CRCs, when s ∈ {1, 2, . . . , 63, 64}, when
s ∈ {8, 16, 24, 32, 40, 48, 56, 64}, and when s ∈ {8, 16, 32, 64}

Remark 6. Our C programs for the CRCs, which follow directly from the pseudocodes in Figs. 1-4, are
written in a style that is intended to be simple and straightforward. For readability, we use an array (instead
of a pointer) for the input s-tuples Qi. We also avoid using any C syntax that obscures the operation
counts. For example, the more explicit syntax if((P&K)!=0) is used instead of the shorthand if(P&K).
Although these 2 expressions are equivalent, the former shows 2 operations more clearly. If desired, these C

6
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programs can be rewritten in pointer and shorthand style, for example, as shown in Figs. 15 and 16, which
are equivalent to Figs. 7 and 8, respectively. !"

#define M  0x8005    /* M = X16+X15+X2+1 */

#define K  0x8000    /* K = 2h-1, h=s=16 */

#define s  16

unsigned short basic_CRC (int n, unsigned short *Q)

{

register int            j, s;

register unsigned short K, M, P, *Qi, *Qn;

Qi = Q;

Qn = Q + n;                        /* 1 */

P = 0;

while (Qi < Qn)                    /* 1 */

    {

    P ^= *Qi++;                    /* 2 */

    for (j=0; j<s; j++)            /* 2 */

       {

       if (P&K)  P = (P<<1) ^ M;   /* 3.5 */

       else      P =  P<<1;      

       }

    }

return P;

}

Fig. 15 C program for the basic h-bit CRC (s = h) in pointer style

#define F  0x7       /* F = X16+X2+X+1 */

#define K  0x8000    /* K = 2h-1, h=s=16 */

#define s  16

unsigned short fast_CRC (int n, unsigned short *Q)

{

register unsigned short A, C, F, K, P, *Qi, *Qn;

Qi = Q;

Qn = Q + n;                     /* 1 */

P = 0;

while (Qi < Qn)                 /* 1 */

    {

    A = P ^ *Qi++;              /* 2 */

    

    if (A&K) C = (A<<1) ^ F;    /* 3.5 */

    else     C =  A<<1;      

    if (C&K) P = (C<<1) ^ F;    /* 3.5 */

    else     P =  C<<1;      

    P ^= C ^ A;                 /* 2 */

    }

return P;

}

Fig. 16 C program for the fast h-bit CRC (s = h) in pointer style

Remark 7. When s is small, we can compute B(X) = RM(X)

[
A(X)Xh

]
, where degree(A(X)) < s, using a

series of if-else statements as follows. For example, suppose that s = 2 and M(X) = Fh(X) = Xh+X2+X+1.
Then A(X) ∈ {0, 1, X,X + 1}, and it can be shown that

B(X) =






0 if A(X) = 0
X2 + X + 1 if A(X) = 1
X3 + X2 + X if A(X) = X
X3 + 1 if A(X) = X + 1

7
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Note that polynomials can also be represented as integer numbers, e.g., the polynomial X3 + X2 + X is
equivalent to the decimal number 14. Thus, B(X) can be computed using the C program segment shown in
Fig. 17. Applying rules (R1) and (R2) to this C program segment, the operation count for computing B(X)
is 1, 2, 3, or 3 if A(X) is 0, 1, 2, or 3 (in integer representation), respectively. We now assume that the bits 0
and 1 of the input message occur equally likely. Thus, A(X) assumes one of the values 0, 1, 2, 3 with equal
probability of 1/4. Then, on the average, the operation count for computing B(X) is (1 + 2 + 3 + 3)/4 =
2.25. In general, this technique for computing B(X) can be applied to any generator polynomial M(X).

Let k denote the operation count required for computing B(X) = RM(X)

[
A(X)Xh

]
using this if-else

technique, where degree(A(X)) < s. Note that k depends on s, i.e., k = k(s). As shown above, we then
have k(2) = 2.25, which is smaller than both rb and rf given in (36) and (38). In general, it can be shown
that k(s) = 2s−1 + 2−1 − 2−s for s ≥ 1. In particular, k(1) = 1. Thus, this if-else technique is effective for
small s, such as s = 1, 2, or 3. However, in this paper, we are mainly concerned with the case s ≥ 8, which
is more commonly used in practice. For this case, k(s) is much greater than both rb and rf . Thus, when
s ≥ 8, the if-else technique is much more expensive than the basic and the new techniques, and it will not
be discussed further in this paper. Note also that this if-else technique is different from the table-lookup
technique (which will be discussed later). #$

if (A == 0) B = 0;    /* 2.25 */

else

   {

   if (A == 1) B = 7;

   else

      {

      if (A == 2) B = 14;

      else        B = 9;

      }

   }

Fig. 17 C program segment for computing B(X) = RFh(X)

[
A(X)Xh

]
for s = 2

Remark 8. Consider an input message U(X), which is protected by an h-bit CRC. Recall that we
implement this CRC by first dividing the input message into n s-tuples Qi(X), i.e., we have U(X) =
(Q0(X), Q1(X), . . . , Qn−1(X)). These s-tuples Qi(X) then become the input to one of the CRC algorithms.
Fig. 9 shows that the complexity of the basic CRCs is rather insensitive to the values of s, whereas the
complexity of the fast CRCs is very sensitive to the values of s. Recall that the operation count per input
byte ef in (39) is a function of s and h, i.e., ef = ef (s, h). For example, Fig. 9 shows that ef (8, 16) = 10
and ef (16, 16) = 6, i.e., ef (16, 16) < ef (8, 16).

So far, we do not address the cost of obtaining the tuples Qi(X). We now address the impact of this cost
by considering the fast 16-bit CRC, i.e., h = 16. Suppose that the input message U(X) originally consists
of m bytes, m ≥ 4, denoted by I0(X), I1(X), . . . , Im−1(X). Each Ii(X) is an 8-tuple. Thus, we need to
organize the bytes Ij(X) into the s-tuples Qi(X). One technique is to simply set Qi(X) = Ii(X), i.e., each
Qi(X) is an 8-tuple. Let e be the operation count per input byte required for CRC encoding. We then have
s = 8, and hence e = ef (8, 16) = 10.

An alternative technique is first to pair 2 adjacent input bytes to form 16-bit tuples from which the check
bits are then computed. More precisely, we now let s = 16 and define the new 16-tuples Qi(X) by

Q0(X) =
{

(I0(X), I1(X)) if m is even
(0, I0(X)) if m is odd

and
Qi(X) =

{
(I2i(X), I2i+1(X)) if m is even
(I2i−1(X), I2i(X)) if m is odd

for
0 < i ≤

{
(m − 2)/2 if m is even
(m − 1)/2 if m is odd

The algorithm for pairing the bytes and then computing the fast 16-bit CRC is shown in Fig. 18. Using
this algorithm, it can be shown that the operation count per input byte is e = 7.5, which is lower than
ef (8, 16) = 10 of the non-pairing technique. Note that e = 7.5 > ef (16, 16) = 6, because of the additional
cost for pairing the input bytes to form the new 16-bit tuples to be used for the CRC computation. #$
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1 if (m is even)
2 {Q = I0X

8 + I1; i = 2; }
3 else
4 {Q = I0; i = 1; }
5 B = RF16

[
Q(X2 + X + 1)

]
;

6 while (i < m − 1)
7 {
8 Q = IiX

8; i = i + 1;
9 Q = Q + Ii; i = i + 1;

10 A = B + Q;
11 B = RF16

[
A(X2 + X + 1)

]
;

12 }
13 P = B;
14 return P ;

Fig. 18 Algorithm for computing the fast 16-bit CRC directly from the m input bytes Ii

A.2 CRC Software Implementation: Table-Lookup Technique

Recall that the complexity of the fast CRCs is low even without using table lookup. With table lookup, the
operation count is reduced at the cost of additional memory resource. Although our focus in this paper is
on bitwise algorithms, we now also present table-lookup algorithms to illustrate tradeoffs between operation
count and table size. Our formulation and results here are straightforward generalizations or variations of
well-known results, which are available in [2, 4, 9, 14, 15, 16]. Note that, with table lookup, speed directly
correlates with operation count under ideal conditions (e.g., the table is stored in the fastest cache, and there
is no cache miss). Otherwise, speed may not correlate directly with operation count (e.g., when the impact
of cache miss is not negligible [4]).

For table-lookup implementation, according to Fig. 10, we use Algorithm 3 (when s < h) and Algorithm 2
(when s ≥ h) for both the basic CRCs and the fast CRCs. From (11), we then have

B(X) = RM(X)

[
A(X)Xh

]

where degree(A(X)) < s. In the following, B(X) is computed by table lookup. Let gb and gf be the total
number of table entries for the basic CRCs and the fast CRCs, respectively.

A.2.1 Basic CRCs

According to Fig. 10, Algorithms 2 and 3 are used for the basic CRCs. Substituting the values of x from
Fig. 13 for Algorithms 2 and 3 into (33), we have

eb =






8(6 + rb)/s if s < h and h = 8, 16, 32, 64
8(7 + rb)/s if s < h and h "= 8, 16, 32, 64
8(3 + rb)/s if s = h
8(4 + rb)/s if s > h

(44)

where rb is the operation count required for computing B(X) via table lookup. The required tables are
defined below. First, we write

s = t1 + t2 + · · · + tm

for some m and ti such that 1 ≤ m ≤ s and 1 ≤ ti ≤ s (i = 1, 2, . . . , m). Next, we decompose A(X) into m
polynomials A1(X), A2(X), . . . , Am−1(X), Am(X) such that

A(X) = A1(X)X(t2+s3+···+tm) + A2(X)X(t3+s4+···+tm) + · · · + Am−1(X)Xtm + Am(X)

=
m−1∑

i=1

Ai(X)X(ti+1+···+tm) + Am(X)

9
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with degree(Ai(X)) < ti, i = 1, 2, . . . , m. We then have

B(X) = RM(X)

[
A(X)Xh

]

= RM(X)

[
m−1∑

i=1

Ai(X)X(ti+1+···+tm+h) + Am(X)Xh

]

=
m−1∑

i=1

RM(X)

[
Ai(X)X(ti+1+···+tm+h)

]
+ RM(X)

[
Am(X)Xh

]

=
m−1∑

i=1

Ti[Ai] + Tm[Am]

(45)

where the tables Ti[ ] are defined by

Ti[Ai] =
{

RM(X)

[
Ai(X)X(ti+1+···+tm+h)

]
if 1 ≤ i < m

RM(X)

[
Am(X)Xh

]
if i = m

(46)

where Ai denotes the ti-tuple that is composed of the binary coefficients of Ai(X). For example, if ti = 4
and Ai(X) = X2 + 1, then Ai = (0101), which is equivalent to the decimal integer 5.

Thus, regardless of whether s < h or s ≥ h, the table Ti[ ] has 2ti entries, each entry is an h-tuple. (For
example, let h = 16 and ti = 8. The table Ti[ ] then has 28 entries, 16 bits each, i.e., the total memory
storage for this particular table is 28 × 16 bits = 512 bytes). Finally, the total number of entries for the m
tables, denoted by gb, is

gb =
m−1∑

i=1

2ti + 2tm =
m∑

i=1

2ti (47)

To summarize, for a given polynomial A(X) of degree less than s, let m, t1, t2, ..., tm be such that s =∑m
i=1 ti. The term

B(X) = RM(X)

[
A(X)Xh

]

can then be computed using the m tables defined by (46). The total number of entries for these tables is
gb =

∑m
i=1 2ti . Further, regardless of whether s < h or s ≥ h, it can be shown that, using the m tables, the

number of operations required for computing B(X) is

rb = 3(m − 1) (48)

We now consider the special case t1 = t2 = · · · = tm = s/m. The m tables defined in (46) then becomes

Ti[Ai] = RM(X)

[
Ai(X)Xh+s(m−i)/m

]

i = 1, 2, . . . , m. Each of the m tables has 2s/m entries. From (47), the total number of table entries is

gb =
m∑

i=1

2s/m = m2s/m (49)

Equations (48) and (49) show tradeoffs between the operation count rb and the table size gb. That is, to
decrease the table size, we must increase m in gb = m2s/m, and this in turn will increase the operation
count rb = 3(m − 1). Thus, smaller (larger) table size gb will yield larger (smaller) operation count rb. In
particular, when m = 1, we have rb = 0 and gb = 2s. When m = s, we have rb = 3(s − 1) and gb = 2s.

Substituting rb = 3(m − 1) into (44), we have

eb =






(24m + 24)/s if s < h and h = 8, 16, 32, 64
(24m + 32)/s if s < h and h %= 8, 16, 32, 64
24m/s if s = h
(24m + 8)/s if s > h

(50)

10
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Note that our formulation is a straightforward generalization of [15], which contains the results for the special
cases h = 16, s ∈ {8, 16}, and m ∈ {1, s}. Our results [e.g., (49)] also resemble those of [9], which presents
in-depth studies of the case h = 32.

Note that the function f(x) = 2x is convex. Given s =
∑m

i=1 ti, from Jensen’s inequality, it can then be
shown that m−1

∑m
i=1 2ti ≥ 2s/m, i.e.,

∑m
i=1 2ti ≥ m2s/m. This implies that, for a given m, the table size gb

in (47) is minimized when t1 = t2 = · · · = tm. Thus, we focus on only this special case (ti = s/m) in this
paper.

For example, let h = 16, s = 8, and m = 1. That is, we use a basic 16-bit CRC to protect a message
consisting of input bytes (s = 8). This CRC is implemented using one lookup table (m = 1), which has
gb = m2s/m = 28 entries. Using (50) with s < h, we have eb = (24m + 24)/s = 6. That is, 6 operations are
required for computing the check tuple per input byte. These results are recorded in the first row of Fig. 19.
Note that, because each table entry has h = 16 bits, the total storage is hgb = 16 × 28 bits = 512 bytes
(which is not shown in the figure). The results for other values of h, s, and m are shown in Fig. 19.

From Fig. 19, we observe the followings. First, the results for the cases h = 8 and h = 16 are identical
for s = 32, 64, i.e., they differs only for s = 8, 16. This follows directly from (50). Similarly, the results for
the cases h = 16 and h = 32 are identical for s = 8, 64, i.e., they differs only for s = 16, 32. Although the
number of table entries gb = m2s/m depends on only s and m, the total storage is hgb = hm2s/m, which
also depends on h.

Recall from Fig. 9 that the complexity results for bitwise implementation of the basic CRCs vary little
over a wide range of s values. In contrast, as seen in Fig. 19, those for table-lookup implementation vary
greatly with s. These results can also be used to optimize CRC table-lookup implementation. For example,
suppose that h = 16. Let us compare the 2 cases: (s = 8, m = 1) and (s = 16, m = 4) in Fig. 19. In
both cases, the required operation count per input byte is eb = 6. However, the first case requires one
table of 28 entries (= 16 × 28 = 512 bytes), while the second case requires 4 tables totaling only 26 entries
(= 16 × 26 = 128 bytes), which is 75% less than the first case. More generally, Fig. 19 shows that, for a
given eb, the total number of table entries gb is minimized when s = h.

h = 8 h = 16 h = 32 h = 64
m eb eb eb eb gb

s = 8 1 3 6 6 6 28

2 6 9 9 9 25

4 12 15 15 15 24

s = 16 1 2 1.5 3 3 216

2 3.5 3 4.5 4.5 29

4 6.5 6 7.5 7.5 26

8 12.5 12 13.5 13.5 25

s = 32 1 1 1 0.75 1.5 232

2 1.75 1.75 1.5 2.25 217

4 3.25 3.25 3 3.75 210

8 6.25 6.25 6 6.75 27

16 12.25 12.25 12 12.75 26

s = 64 1 0.5 0.5 0.5 0.375 264

2 0.875 0.875 0.875 0.75 233

4 1.625 1.625 1.625 1.5 218

8 3.125 3.125 3.125 3 211

16 6.125 6.125 6.125 6 28

32 12.125 12.125 12.125 12 27

Fig. 19 Complexity results for table-lookup technique for the basic h-bit CRCs (eb = operation count per input
byte, gb = total number of entries from m tables)

Remark 9. Both gb and eb depend on s, h, and m, i.e., we can write gb = gb(s, h,m) and eb = eb(s, h,m).
Consider the 2 special cases: m = s/2 and m = s. From (49) and (50), it can be shown that gb(s, h, s/2) =
gb(s, h, s) = 2s and eb(s, h, s/2) < eb(s, h, s). That is, these 2 cases yield the same table size, but the case
m = s/2 always yields lower operation count than the case m = s. Thus, the case m = s can be eliminated
from our discussion. $%

Remark 10. So far, B(X) is computed by either the bitwise technique or the table-lookup technique.
However, B(X) can also be computed using both techniques as follows. Recall from (45) that B(X) is the
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sum of m terms. Suppose that we now use tables to compute the first m − 1 terms, and use no tables to
compute the last term. More precisely, from (45), we have

B(X) =
m−1∑

i=1

RM(X)

[
Ai(X)X(ti+1+···+tm+h)

]
+ RM(X)

[
Am(X)Xh

]

=
m−1∑

i=1

Ti[Ai] + RM(X)

[
Am(X)Xh

]

where the m − 1 tables Ti[ ] are defined by Ti[Ai] = RM(X)

[
Ai(X)X(ti+1+···+tm+h)

]
, 1 ≤ i < m. Assume

now that RM(X)

[
Am(X)Xh

]
is computed without using tables. Thus, B(X) can be computed using the

2 techniques at the same time: the table lookup technique (with the m − 1 tables Ti[ ]) and the bitwise
technique (for computing RM(X)

[
Am(X)Xh

]
without using tables). In the following, this mixed technique

is applied to the fast CRCs to yield small table size when s ≈ h. $%

A.2.2 Fast CRCs

Recall from Section 2.1 that, when implementing an h-bit CRC, we are free to choose the value of s, which is
the size of each input tuple Qi(X). That is, we can choose s < h, s = h, or s > h. Fig. 9 shows that, under
bitwise implementation, the fast CRCs are much faster than the basic CRCs for s ≤ h, in the sense that ef

is much smaller than eb. Further, by comparing Fig. 9 with Fig. 19, we see that the bitwise implementation
of the fast CRCs (i.e., gf = 0) is even faster than the table-lookup implementation of the basic CRCs (i.e.,
gb > 0) in many cases. For example, consider the case s = h = 32. Fig. 19 shows that eb = 6 when gb = 27

(at m = 8), and eb = 12 when gb = 26 (at m = 16). On the other hand, Fig. 9 shows that ef = 3 when
gf = 0. The same figures also show that, although the fast CRC requires no table lookup (i.e., gf = 0) and
the basic CRC requires a table of gb = 210 entries (at m = 4), both CRCs have the same operation count
ef = eb = 3.

Recall from (41) and (43) that, under bitwise implementation, ef is minimized either at s = h − 2 or at
s = h. Thus, by choosing s to be at (or near) these optimal values, the fast CRCs require no table lookup
(i.e., gf = 0) and still have low operation count (i.e., ef is small).

We now discuss table-lookup techniques for the fast CRCs generated by Fh(X) = Xh + X2 + X + 1.
An obvious technique is to apply the table-lookup technique in Section A.2.1 for the basic CRCs to the fast
CRCs by simply letting M(X) = Fh(X). The required total number of table entries is then given by (49),
i.e., gf = gb = m2s/m. In the following, for the case s ≥ h, we present another table-lookup technique (which
is similar to the mixed technique in Remark 10 with m = 2) that exploits the special structure of Fh(X) to
yield gf = 2s−h+2, which is small when s ≈ h , e.g., gf = 4 when s = h.

Recall that rf denotes the operation count required for computing B(X). Without using tables (i.e.,
when gf = 0), rf is given by (38), i.e., rf = 9 + 5.5(s − h) for s ≥ h. We show below that rf is slightly
reduced by using a small lookup table.

Assume that s ≥ h. According to Fig. 10, we use Algorithm 2 to implement the table-lookup technique
for the fast CRCs when s ≥ h. From Fig. 13, we then have

x =
{ 3 if s = h

4 if s > h

which is inserted in (33) to yield

ef =
{

8(3 + rf )/s if s = h
8(4 + rf )/s if s > h

(51)

where rf , which denotes the operation count required for computing B(X) via table lookup, is determined
in the following.

First, we decompose A(X) into A1(X) and A2(X) such that

A(X) = A1(X)Xh−2 + A2(X)

12
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where degree(A1(X)) < s − h + 2 and degree(A2(X)) < h − 2. Using (11) with M(X) = Fh(X), we have

B(X) = RFh(X)

[
A(X)Xh

]

= RFh(X)

[
A(X)(Xh + Fh(X))

]

= RFh(X)

[
A(X)(X2 + X + 1)

]

= RFh(X)

[
A1(X)Xh−2(X2 + X + 1)

]
+ A2(X)(X2 + X + 1)

= Tf [A1] + A2(X)(X2 + X + 1)

where Tf [ ] is the table defined by

Tf [A1] = RFh(X)

[
A1(X)Xh−2(X2 + X + 1)

]
(52)

where A1 denotes the (s− h + 2)-tuple that is composed of the binary coefficients of the polynomial A1(X)
of degree less than s− h + 2. The table Tf [ ] has gf = 2s−h+2 entries, and each entry contains h bits. Using
this table, it can be shown that the operation count required for computing B(X) is rf = 7. To summarize,
when s ≥ h, we have

rf = 7, gf = 2s−h+2 (53)

Substituting (53) into (51), we then have the following operation count per input byte and the table size
for the case s ≥ h:

ef =
{

80/s, gf = 4 if s = h
88/s, gf = 2s−h+2 if s > h

(54)

i.e., the table size gf grows exponentially with the difference s− h. Thus, this table-lookup technique is not
recommended for large s − h. To have a small table, we must choose s that is sufficiently close to h. The
table size is minimized when s = h, which yields gf = 4, i.e., the fast h-bit CRCs now require ef = 80/h
operations per input byte and a small table of only gf = 4 entries. This is 20% lower than the bitwise
technique (i.e., gf = 0) that requires ef = 96/h operations per input byte. Fig. 20 shows the numerical
values of (54) for s, h ∈ {8, 16, 32, 64}, which vary greatly with h and s. In particular, the table size is large
(gf ≥ 210) when s > h, but is very small (gf = 4) when s = h.

For the special case s = h for which gf = 4, it can be shown that the 4 entries of the table (52) are given
by

Tf [0] = 0

Tf [1] = Xh−1 + Xh−2 + X2 + X + 1

Tf [2] = Xh−1 + X3 + 1

Tf [3] = Xh−2 + X3 + X2 + X

These entries in hexadecimal are shown in Fig. 21.
The table-lookup algorithm for the fast CRC (when s ≥ h) is given in Fig. 22, where the 2s−h+2 entries

of the table Tf [ ] defined by (52) are stored in the top part of the algorithm. The C program for the special
case s = h = 16, which is based on Fig. 22, is given in Fig. 23.

s ef gf

h = 8 8 10 22

16 5.5 210

32 2.75 226

64 1.375 258

h = 16 16 5 22

32 2.75 218

64 1.375 250

h = 32 32 2.5 22

64 1.375 234

h = 64 64 1.25 22

Fig. 20 Complexity results for the fast h-bit CRCs with table lookup, s ≥ h (ef = operation count per input
byte, gf = total number of table entries)
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h Tf [0] Tf [1] Tf [2] Tf [3]
8 0 c7 89 4e
16 0 c007 8009 400e
32 0 c0000007 80000009 4000000e
64 0 c000000000000007 8000000000000009 400000000000000e

Fig. 21 Four-entry tables for the fast h-bit CRCs (s = h)

1 store Tf [0], . . . , Tf [2s−h+2 − 1];
2 B = 0;
3 for (0 ≤ i < n)
4 {
5 A = BXs−h + Qi;
6 A1 = (s − h + 2) left-hand bits of A;
7 A2 = (h − 2) right-hand bits of A;
8 B = Tf [A1] + A2(X

2 + X + 1);
9 }

10 P = B;
11 return P ;

Fig. 22 Table-lookup algorithm for the fast h-bit CRC (s ≥ h)

unsigned short 

fast_CRC_table (int n, unsigned short *Q)

{

int            i;

unsigned short A, A1, A2, P;

static unsigned short T[4] = 

{0x0, 0xc007, 0x8009, 0x400e};

P = 0;

for (i=0; i<n; i=i+1)             /* 2 */

    {

    A = P ^ Q[i];                 /* 1 */

    A1 = A >> 14;                 /* 1 */

    A2 = A & 0x3fff;              /* 1 */

    P = T[A1]^(A2<<2)^(A2<<1)^A2; /* 5 */

    }

return P;

}

Fig. 23 C program for the fast h-bit CRC with table lookup (s = h = 16)

APPENDIX B OTHER FAST ERROR-DETECTION CODES

So far, we apply the new technique (15) to Fh(X) = Xh + X2 + X + 1 to yield the fast h-bit CRCs. We
now use this same technique to construct some other error-detection codes, which are also fast and have
minimum distances d = 2, 3, or 4.

Recall from Section 3.3 that the maximum length of an error-detection code is defined to be the total bit
length at or below which its minimum distance is d ≥ 3, i.e., beyond which its minimum distance will reduce
to d = 2. Theorem 2 shows that the maximum length of a CRC is the period of its generator polynomial.
In the following, nb denotes the total bit length of a code.

B.1 Fast CRCs Generated by Binomials

Consider the h-bit CRC generated by the binomial M(X) = Xh +1, which has period h. To avoid triviality,
we assume that this CRC includes at least one input bit, i.e., nb > h. From Theorem 2, this CRC then has
the minimum distance d = 2, i.e., it is a weak code for error detection. This CRC can be implemented via
Fig. 3 (for s < h) or Fig. 4 (for s ≥ h). Applying the new technique (15) to M(X) = Xh +1, the term B(X)
in these figures is given by

B(X) =
{

A(X) if s < h
RN(X)

[
A(X)Xs−h

]
if s ≥ h

14
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where N(X) = (Xh + 1)Xs−h. Note that by choosing s ≤ h, we have B(X) = A(X), i.e., the polynomial
division is eliminated.

Suppose now that s = h. The CRC generated by Xh + 1 can then be implemented by Fig. 6 with
B(X) = A(X). Fig. 6 can be further simplified to yield the following pseudocode for computing the check
h-tuple P (X):

1 P = 0;
2 for (0 ≤ i < n)
3 P = P + Qi;
4 return P ;

which yields

P (X) =
n−1∑

i=0

Qi(X)

i.e., the CRC generated by M(X) = Xh + 1 is identical to the bock-parity checksum [4]. From the above
pseudocode, it can be shown that computing the check tuple P (X) for this checksum requires e = 24/s
operations per input byte. Recall from Section 4 that eb = 8(3 + 5.5s)/s and ef = 96/s. We then have
ef/e = 96/24 = 4 and eb/e = 8(3 + 5.5s)/24 = (3 + 5.5s)/3.

For example, if s = h = 16, then computing the check tuple P (X) for the 16-bit bock-parity checksum
requires e = 24/16 = 1.5 operations per input byte. We then have ef/e = 4 and eb/e = (3 + 5.5 × 16)/3 =
30.33. Thus, as expected, the bock-parity checksum (which has minimum distance d = 2) is substantially
faster than the fast and basic CRCs (both of which have minimum distance d = 4).

B.2 Fast CRCs Generated by Trimomials

Let C be the CRC generated by the trinomial Th(X) = Xh + X + 1. The periods t of the trinomials are
given in Fig. 24 for h ≥ 3. Note that the periods t for the important cases h = 8, 16, 32, 64 are unusually
small. Because Th(X) is a codeword of weight 3, the minimum distance d of this CRC must satisfy d ≤ 3.
From Theorem 2, we then have d = 3 if nb ≤ t, and d = 2 if nb > t. This CRC can be implemented via
Fig. 3 (for s < h) or Fig. 4 (for s ≥ h). Applying the new technique (15) to M(X) = Th(X), the term B(X)
in these figures is given by

B(X) =
{

RTh(X) [A(X)(X + 1)] if s < h
RN(X)

[
A(X)Xs−h(X + 1)

]
if s ≥ h

(55)

where N(X) = (Xh + X + 1)Xs−h. Remark 1 implies that it is simpler to compute the B(X) in (55) than
the B(X) in (16). Thus, the CRC generated by the trinomial Th(X) = Xh + X + 1 is faster than the fast
CRC generated by Fh(X) = Xh + X2 + X + 1. However, the former has minimum distance only d = 3,
whereas the latter has minimum distance d = 4. Further, for the important cases of h = 8, 16, 32, 64, the
maximum length of the faster CRC generated by the trinomial Th(X) is much shorter than that of the
fast CRC generated by Fh(X). For example, the faster 16-bit CRC generated by T16(X) has d = 3 and
the maximum length of only 255 bits (see Fig. 24), whereas the fast CRC generated by F16(X) has d = 4
and the maximum length of 215 − 1 = 32767 bits (see Section 3.2). Thus, these 2 types of CRCs illustrate
tradeoffs between code capability and complexity.
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h period 2h−1
period

3 7 1
4 15 1
7 127 1
8 63 4.05
15 32767 1
16 255 257
23 2088705 4.02
24 2097151 8
31 2097151 1024
32 1023 4.2 × 106

63 263 − 1 1
64 4095 4.5 × 1015

127 2127 − 1 1
128 16383 2.1 × 1034

Fig. 24 The period of trinomial Th(X) = Xh + X + 1

B.3 Fast and Optimal Error-Detection Codes

In the following, we construct codes that are not only fast, but also have optimal error-detecting capability.
The h-bit CRC in Section B.2, which is denoted by C and has minimum distance d = 3, can be extended
to yield a code that has d = 4 by adding an overall parity bit to the h-bit CRC. Note that this extended
code, denoted by C∗, has h∗ = h + 1 check bits and is not a CRC. The h-bit CRC has burst-error-detecting
capability b = h. The following theorem shows that the extended code C∗ has burst-error-detecting capability
b = h∗ = h + 1.
Theorem 4. Let C be an h-bit CRC generated by a polynomial M(X) of degree h. Assume that X is not
a factor of M(X), i.e., gcd(X, M(X)) = 1, and that M(X) has odd weight, i.e., it has an odd number of
terms. Let C∗ be the non-CRC code that is obtained by adding an overall parity check bit to C, i.e., C∗ has
h∗ = h + 1 check bits. Then C∗ detects all error bursts of length h + 1 or less, i.e., its burst-error-detecting
capability is b = h + 1.
Proof. Let V ∗(X) be a codeword of C∗. By definition of C∗, we have V ∗(X) = V (X)X + parity(V (X)),
where V (X) is a codeword of C. Because V (X) is a codeword of the CRC generated by M(X), we have
V (X) = K(X)M(X) for some polynomial K(X) (see the proof of Theorem 2). We then have

V ∗(X) = K(X)M(X)X + parity(K(X)M(X))

Let E∗(X) be an error burst of length h + 1 or less, which has the form

E∗(X) = Xi(E(X) + 1)

where i ≥ 0, and E(X) is a polynomial such that E(X) "= 1 and degree(E(X)) ≤ h. Using proof by
contradiction, we now show that E∗(X) cannot be a codeword of C∗. Thus, assume that E∗(X) is a nonzero
codeword of C∗, i.e.,

Xi(E(X) + 1) = K(X)M(X)X + parity(K(X)M(X))

We consider 2 cases: i = 0 and i > 0.
Case 1: i = 0. We then have

E(X) + 1 = K(X)M(X)X + parity(K(X)M(X))

This implies that parity(K(X)M(X)) = 1. Thus, K(X) "= 0, which implies that degree(K(X)M(X)X) >
h. But we also have E(X) = K(X)M(X)X, which implies that degree(K(X)M(X)X) ≤ h, which is a
contradiction to the previous statement.

Case 2: i > 0. We then have parity(K(X)M(X)) = 0. Thus, Xi(E(X) + 1) = K(X)M(X)X. Because
gcd(X,M(X)) = 1, we must have Xi = K(X)X. Thus, K(X) = Xi−1. We then have parity(K(X)M(X)) =
parity(M(X)) = 1, which is a contradiction to the previous statement that parity(K(X)M(X)) = 0. $%

Let t be the period of the polynomial M(X) in Theorem 4. The extended code C∗ in Theorem 4 then
has h∗ = h + 1 check bits, the burst-error-detecting capability b = h∗ = h + 1, the minimum distance
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d = 4, and the maximum length of t + 1 bits. In the following, we show that C∗ becomes fast by choosing
M(X) = Th(X) = Xh + X + 1, i.e., M(X) is a trinomial.

Thus, let M(X) = Xh + X + 1, and PCRC(X) be the check h-tuple for the CRC generated by this
particular M(X). Suppose that s = h + 1. Because s > h, the check tuple PCRC(X) can be computed by
Algorithm 4 (see Fig. 4), in which the term B(X) is computed by (55), i.e.,

B(X) = RN(X) [A(X)X(X + 1)]

= RN(X)

[
A(X)(X2 + X)

]

where N(X) = (Xh + X + 1)X, and degree(A(X)) < s = h + 1.
Recall from Theorem 4 that the non-CRC code C∗ is obtained by adding an overall parity check bit to

the above CRC. The overall parity bit of C∗ is computed as follows. First, we define

W (X) =
n−1∑

i=0

Qi(X) + PCRC(X)X

where Q0(X), . . . , Qn−1(X) are the input s-tuples. The overall parity bit of C∗ is also the parity bit of
W (X). The check polynomial of C∗ is then

P (X) = PCRC(X)X + parity(W (X))

which is a polynomial of degree < h + 1.
Fig. 25 shows an implementation of C∗, which is based on Fig. 4 (with s = h∗ = h + 1 and M(X) =

Xh + X + 1) and includes the calculation of the overall parity bit of C∗. Let e∗ be the operation count
per input byte required for computing the check tuple P (X) for the code C∗. By ignoring the negligible
complexity due to the terms outside the loop indexed by i in Fig. 25, it can be shown that e∗ = 96/h∗. It is
shown in (39) of Appendix A that the complexity for the fast h∗-bit CRC is also given by ef = 96/h∗ (when
s = h∗). Thus, e∗ = ef , i.e., the (non-CRC) h∗-bit code C∗ is as fast as the fast h∗-bit CRC.

Let M(X) be a primitive polynomial of degree h, i.e., the period of M(X) is t = 2h − 1. Let us now
compare the capability and complexity for the following 2 codes, each of which has h∗ = h + 1 check
bits. The first code is the familiar basic CRC generated by (X + 1)M(X), which has d = 4, b = h + 1,
and the maximum length of 2h − 1 bits. An example is the well-known CRC-16, which is generated by
M(X) = (X + 1)(X15 + X + 1) = X16 + X15 + X2 + 1. Under bitwise implementation, this basic CRC
requires eb = 45.5 operations per input byte for computing its check tuple, provided that the input message
is composed of 16-tuples, i.e., s = h = 16 (see Fig. 9).

The second code is the non-CRC code C∗ as described in Theorem 4, which has d = 4, b = h + 1, and
the maximum length of t + 1 = 2h bits (which is 1 bit longer than the basic (h + 1)-bit CRC above). It
is well-known that any code that has h + 1 check bits and the minimum distance d = 4 must satisfy the
following 2 constraints: (1) the burst-error detecting capability b ≤ h + 1 and (2) the maximum length
≤ 2h. Thus, the non-CRC code C∗ is optimal for error detection in the sense that, with h∗ = h + 1 check
bits and d = 4, it has the optimal b = h∗ and the optimal maximum length 2h. In fact, at the maximum
length of 2h bits, the code C∗ is a (2h, 2h − h − 1, 4) extended Hamming perfect code with the optimal
burst-error-detecting capability b = h + 1. Also, it is well-known that the undetected error probability of
this perfect code is bounded above by 2−(h+1).

As shown in Fig. 25, the code C∗ is fast when M(X) = Th(X) = Xh + X + 1, i.e., M(X) is a trinomial.
It is known that Th(X) is primitive for some values of h [18], including h = 3, 7, 15, 63, and 127 (i.e.,
h + 1 = 4, 8, 16, 64, and 128). For example, let h = 15 and s = h∗ = h + 1 = 16. Using Fig. 25, it can
be shown that the operation count per input bye required for computing the check tuple for the (non-CRC)
16-bit code C∗ is e∗ = 96/16 = 6 (which is much smaller than eb = 45.5 of the basic CRC-16 above). To
summarize, the (non-CRC) h∗-bit code C∗ (e.g., with h∗ = 4, 8, 16, 64, or 128 check bits) constructed from
a primitive trinomial and an overall parity check bit has (a) the optimal error-detection capability and (b) a
fast bitwise implementation. Note that, as discussed later in Section C.3, other fast and optimal codes can
also be constructed from polynomials different from trinomials.
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1 W = 0;
2 B = 0;
3 for (0 ≤ i < n)
4 {
5 A = B + Qi;
6 B = RN

[
A(X2 + X)

]
;

7 W = W + Qi;
8 }
9 W = W + B;

10 P = B + parity(W );
11 return P ;

Fig. 25 Algorithm for computing the fast (h + 1)-bit non-CRC code from the h-bit CRC (generated by
Xh + X + 1) and an overall parity bit

APPENDIX C APPLICATION OF THE NEW TECHNIQUE TO GENERAL GENERATOR
POLYNOMIALS

So far, we apply the new technique (15) to the polynomials Xh +X2+X +1, Xh +X +1, and Xh +1 to yield
fast CRCs. In this appendix, we apply the same technique to more general generator polynomials, and then
determine the conditions under which the new technique is faster than the basic technique. In particular, we
show later in Section C.1.2.1 that, when applied to the CRC-64-ISO generated by X64+X4+X3+X +1, the
new technique is 15 times faster than the basic technique. This appendix presents only bitwise algorithms.

Consider an h-bit CRC that is generated by a general polynomial

F (X) = Xh + Xik + Xik−1 + · · · + Xi1 + 1

= Xh + H(X)
(56)

where k > 0, h > ik > ik−1 > · · · > i1 > 0, and

H(X) = Xik + Xik−1 + · · · + Xi1 + 1 (57)

Note that ik ≥ k > 0, ik = degree(H(X)), and k = weight of (H(X) + 1). Here, we have F (X) "= Xh + 1
because i1 > 0, i.e., H(X) "= 1. The case F (X) = Xh + 1 is already discussed in Section B.1, where it is
shown that the CRC reduces to the block-parity checksum.

The h-bit CRC generated by (56) can be computed either by the basic technique (see Definition 1) or by
the new technique (15). Recall that CRC complexity refers to the operation count per input byte (denoted
by eb and ef for the basic and the fast CRCs, respectively) required for computing the CRC check tuple.
Again, we assume that the CRCs are implemented in C, and the operations are counted according to rules
(R1) and (R2) stated in Appendix A.

C.1 General CRC Generator Polynomials

First, suppose that the basic technique is used to compute the check tuple of the CRC generated by (56),
i.e., B(X) is computed as in Definition 1 with M(X) = F (X) in (11). From (37), we have

eb =
{

8(4 + 5.5s)/s if s < h
8(3 + 5.5s)/s if s ≥ h

(58)

Next, suppose that the new technique is used to compute the check tuple of the CRC generated by (56).
By letting M(X) = F (X) in (15), we have

B(X) =
{

RF (X)

[
A(X)(Xh + F (X))

]
if s < h

RN(X) [A(X)(Xs + N(X))] if s ≥ h
(59)

where N(X) = F (X)Xs−h and degree(A(X)) < s. Substituting (56) into (59), we have

B(X) =
{

RF (X) [A(X)H(X)] if s < h
RN(X)

[
A(X)H(X)Xs−h

]
if s ≥ h

(60)
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To briefly illustrate the main idea, consider the special case s = h. Then B(X) = RF (X)

[
A(X)Xh

]
under

the basic technique, and B(X) = RF (X)

[
A(X)(Xik + Xik−1 + · · · + Xi1 + 1)

]
under the new technique.

Intuition suggests that computing B(X) via the new technique is faster than the basic technique if ik is
sufficiently small. More precise conditions on ik are given in the following.

Let e be the operation count per input byte required for computing the CRC check tuple under the new
technique (60). We have e = ef for the special case F (X) = Fh(X) = Xh + X2 + X + 1. Although Fig. 9
shows that ef < eb, it may not be the case that e < eb for the more general polynomial F (X). Thus, in the
following, we determine the conditions on F (X) so that e < eb or eb/e > 1 (i.e., the conditions under which
the new technique is faster than the basic technique). Thus, the new technique serves as a faster alternative
to the basic technique when eb/e > 1. Before continuing, we present the following remarks, which contain
some results that will be used later to determine the operation count required for computing B(X).
Remark 11. Let r′ be the number of operations required for computing

B′(X) = A(X)(Xjn + · · · + Xj1 + 1)

= A(X)Xjn + · · · + A(X)Xj1 + A(X)

where it is assumed that the tuple A(X)Xji can be stored in a single computer word. Computing A(X)Xji

is then equivalent to shifting A(X) to the left by ji bits, which can be done by a single operation on most
computers. Thus, for a given A(X), we can compute B′(X) by using n left-shift operations and n addition
operations. We then have r′ = 2n. !"

Remark 12. Let r∗ be the number of operations required for computing

B∗(X) = RM∗(X)

[
A∗(X)(Xjn + · · · + Xjq + 1)

]

= RM∗(X)

[
A∗(X)Xjn

]
+ · · · + RM∗(X)

[
A∗(X)Xjq

]
+ RM∗(X) [A∗(X)]

where n ≥ q, and RM∗(X)

[
A∗(X)Xji

]
$≡ A∗(X)Xji , i.e., the polynomial division is needed.

Define
Cq−1(X) = RM∗(X) [A∗(X)]

Cq(X) = RM∗(X)

[
Cq−1(X)Xjq

]

Cq+1(X) = RM∗(X)

[
Cq(X)Xjq+1−jq

]

· · ·
Cm+q(X) = RM∗(X)

[
Cm+q−1(X)Xjm+q−jm+q−1

]

· · ·
Cn(X) = RM∗(X)

[
Cn−1(X)Xjn−jn−1

]

Let r0 be the operation count required for computing Cq−1(X). Given Cq−1(X), the term Cq(X) =
RM∗(X)

[
Cq−1(X)Xjq

]
can be computed with 5.5jq operations, and so on. Given Cn−1(X), the final term

Cn(X) = RM∗(X)

[
Cn−1(X)Xjn−jn−1

]
can be computed in 5.5(jn − jn−1) operations. Thus, computing

Cq−1(X), Cq(X), . . . , Cn(X) altogether requires

r0 + 5.5jq + 5.5(jq+1 − jq) + · · · + 5.5(jn − jn−1) = r0 + 5.5jn

operations. Because B∗(X) = Cq−1(X) + Cq(X) + · · · + Cn(X), the tuple B∗(X) is computed by using
(n − q + 1) addition operations. Overall, B∗(X) can be computed with

r∗ = 5.5jn + n − q + 1 + r0

operations, where r0 is the operation count required for computing RM∗(X) [A∗(X)]. !"
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C.1.1 Case: s ≥ h
In this case, according to Fig. 10, the new technique uses Algorithm 4 (shown in Fig. 4), which contains the
computation of B(X). From (57) and (60), we have

B(X) = RN(X)

[
A(X)H(X)Xs−h

]

= RN(X)

[
A∗(X)Xik

]
+ RN(X)

[
A∗(X)Xik−1

]
+ · · · + RN(X)

[
A∗(X)Xi1

]
+ RN(X) [A∗(X)]

where A∗(X) = A(X)Xs−h. Using Remark 3, it can be shown that RN(X) [A∗(X)] = RN(X)

[
A(X)Xs−h

]
can

be computed with r0 = 5.5(s−h) operations (see Appendix C). Applying Remark 12 with M∗(X) = N(X),
n = k, jn = ik, q = 1, and r0 = 5.5(s − h), the tuple B(X) can be computed with r = 5.5(s − h + ik) + k
operations.

Fig. 13 shows that x = 3 for s ≥ h under Algorithm 4. By substituting the values of x and r into (33),
the operation count per input byte required for computing the check tuple under the new technique is

e =
8[3 + 5.5(s − h + ik) + k]

s
(61)

Using (58) and (61), we have
eb

e
=

3 + 5.5s

3 + 5.5(s − h + ik) + k
(62)

Thus, the new technique is faster than the basic technique when eb/e > 1, i.e., 3+5.5s > 3+5.5(s−h+ik)+k,
which is equivalent to

ik < h − k

5.5
where ik = degree(H(X)) and k = weight of (H(X) + 1).
Remark 13. Suppose that F (X) is either Xh + X2 + X + 1 or Xh + X + 1. Then ik ≤ 2, i.e., ik is a
very small value. Thus, it is appropriate to use loop unrolling in the calculation of Cm(X) above. Then
(61)reduces to e = 8[3 + 5.5(s − h) + 3.5ik + k]/s, and then

eb

e
=

3 + 5.5s

3 + 5.5(s − h) + 3.5ik + k
(63)

Note that it is common to choose s, h ∈ {8, 16, 32, 64}, i.e., the typical values of s and h are not very small,
even when ik is very small.

For example, suppose now that s = h and F (X) = Fh(X) = Xh + X2 + X + 1, i.e., k = ik = 2 and
e = ef . Substituting s = h and k = ik = 2 into (63), we have

eb

e
=

eb

ef
=

3 + 5.5h

3 + 3.5 × 2 + 2
= 0.25 + 0.458h

as previously shown in (29). &'

C.1.2 Case: s < h
In this case, according to Fig. 10, the new technique uses Algorithm 3 (shown in Fig. 3), which contains the
computation of B(X). From (60), we have B(X) = RF (X) [A(X)H(X)]. From Fig. 13, we have

x =
{

6 if h = 8, 16, 32, 64
7 if h (= 8, 16, 32, 64

By substituting the values of x into (33), the operation count per input byte required for computing the
CRC check tuple under the new technique is

e =
{

8(6 + r)/s if h = 8, 16, 32, 64
8(7 + r)/s if h (= 8, 16, 32, 64 (64)

where r is the number of operations required for computing B(X) = RF (X) [A(X)H(X)]. From (58), we
have eb = 8(4 + 5.5s)/s for s < h, which is used with (64) to yield

eb

e
=

{
(4 + 5.5s)/(6 + r) if h = 8, 16, 32, 64
(4 + 5.5s)/(7 + r) if h (= 8, 16, 32, 64 (65)

where r, which depends on whether ik ≤ h − s or ik < h − s, is computed in the following subsections.
As seen below, the condition ik ≤ h − s implies that B(X) = RF (X) [A(X)H(X)] = A(X)H(X), i.e., the
polynomial division is eliminated.
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C.1.2.1 Case: s < h and ik ≤ h − s

Because degree(A(X)) < s and degree(H(X)) = ik, we have degree(A(X)H(X)) < s + ik. The assumption
ik ≤ h − s then implies that degree(A(X)H(X)) < h. Thus, B(X) = RF (X) [A(X)H(X)] = A(X)H(X),
i.e., the polynomial division is eliminated. Let r be the number of operations required for computing
B(X) = A(X)H(X). Using (57), we have

B(X) = A(X)Xik + A(X)Xik−1 + · · · + A(X)Xi1 + A(X)

Applying Remark 11, we then have r = 2k, which is substituted into (64) and (65) to yield

e =
{

8(6 + 2k)/s if h = 8, 16, 32, 64
8(7 + 2k)/s if h #= 8, 16, 32, 64 (66)

eb

e
=

{
(4 + 5.5s)/(6 + 2k) if h = 8, 16, 32, 64
(4 + 5.5s)/(7 + 2k) if h #= 8, 16, 32, 64 (67)

Thus, the new technique is faster than the basic technique if eb/e > 1, i.e.,

4 + 5.5s >

{
6 + 2k if h = 8, 16, 32, 64
7 + 2k if h #= 8, 16, 32, 64

which is equivalent to

k <

{
2.75s − 1 if h = 8, 16, 32, 64
2.75s − 1.5 if h #= 8, 16, 32, 64 (68)

where ik = degree(H(X)) and k = weight of (H(X) + 1).
For example, consider the CRC-64-ISO, generated by

F (X) = X64 + X4 + X3 + X + 1

Here, we have h = 64, k = 3, and ik = 4. Assume that s ≤ h − ik = 60. Under the new technique, we then
have

B(X) = RF (X)

[
A(X)(X4 + X3 + X + 1)

]

= A(X)X4 + A(X)X3 + A(X)X + A(X)

i.e., the polynomial division is eliminated. Substituting k = 3 into (67), we have

eb

e
=

4 + 5.5s

12

For the special case s = 32, we have eb/e = 15, i.e., the new technique is 15 times faster than the basic
technique for the CRC-64-ISO. We also have eb/e = 15 when s = 32 for a 64-bit CRC generated by a
polynomial that has the following more general form

F (X) = X64 + Xi3 + Xi2 + Xi1 + 1

where 32 ≥ i3 > i2 > i1 > 0.

C.1.2.2 Case: s < h and ik > h − s

As seen below, the computation of B(X) requires the polynomial division in this case. The assumption
ik > h − s implies that there exists m∗ such that 1 ≤ m∗ ≤ k , im∗ > h − s, and ij ≤ h − s for all j < m∗.
There are 3 subcases to consider.

Case 1: 1 < m∗ < k. By letting m = m∗ − 1, we have

F (X) = Xh + Xik + · · · + Xim+1 + Xim + · · · + Xi1 + 1

where h > ik > im+1 > im ≥ i1 > 0, im+1 > h − s, and im ≤ h − s.
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Because im ≤ h − s, we have degree(A(X)Xin) < h, for 1 ≤ n ≤ m. Thus,

RF (X)

[
A(X)Xin

]
= A(X)Xin

for 1 ≤ n ≤ m. From (60), we then have

B(X) = RF (X)

[
A(X)Xik

]
+ · · · + RF (X)

[
A(X)Xim+1

]
+ A(X)Xim + · · · + A(X)Xi1 + A(X)

By letting A∗(X) = A(X)Xim+1 , we can write

B(X) = B1(X) + B2(X)

where

B1(X) = RF (X)

[
A∗(X)Xik−im+1

]
+ · · · + RF (X)

[
A∗(X)Xim+2−im+1

]
+ RF (X) [A∗(X)]

and
B2(X) = A(X)Xim + · · · + A(X)Xi1 + A(X)

Because RF (X) [A∗(X)] = RF (X)

[
A(X)Xim+1

]
= RF (X)

[
(A(X)Xh−s)Xim+1−(h−s)

]
, the term

RF (X) [A∗(X)] can be computed with r0 = 1 + 5.5[im+1 − (h − s)] operations for a given A(X). Using
Remark 12, B1(X) can be computed with

r1 = 5.5(ik − im+1) + k − (m + 2) + 1 + r0

= 5.5[ik − (h − s)] + k − m

operations. Using Remark 11, B2(X) can be computed with r2 = 2m operations. Overall, the number of
operations required for computing B(X) is

r = r1 + r2 + 1
= 5.5[ik − (h − s)] + k + m + 1

which is substituted into (65) to yield

eb

e
=

{
(4 + 5.5s)/(6 + 5.5[ik − (h − s)] + k + m + 1) if h = 8, 16, 32, 64
(4 + 5.5s)/(7 + 5.5[ik − (h − s)] + k + m + 1) if h #= 8, 16, 32, 64 (69)

Thus, the new technique is faster than the basic technique when

4 + 5.5s >

{
6 + 5.5[ik − (h − s)] + k + m + 1 if h = 8, 16, 32, 64
7 + 5.5[ik − (h − s)] + k + m + 1 if h #= 8, 16, 32, 64

which is equivalent to

ik <

{
h − (3 + k + m)/5.5 if h = 8, 16, 32, 64
h − (4 + k + m)/5.5 if h #= 8, 16, 32, 64

where ik = degree(H(X)) and k = weight of (H(X) + 1). Recall that we also assume that h > ik > im+1 >
im ≥ i1 > 0, im+1 > h − s, and im ≤ h − s.

For example, consider the CRC-32-IEEE 802.3 generated by

F (X) = X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1 (70)

i.e., h = 32, k = 13, ik = 26. Assume that s = 16. We then have m = 10. Substituting these values into
(69) yields eb/e = 92/85, i.e., the new technique is slightly faster than the basic technique.

Case 2: m∗ = 1. We then have

F (X) = Xh + Xik + · · · + Xi1 + 1

22



IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 10, OCTOBER 2009 NGUYEN: FAST CRCS

where i1 > h − s. We have

B(X) = RF (X)

[
A(X)Xik

]
+ · · · + RF (X)

[
A(X)Xi2

]
+ RF (X)

[
A(X)Xi1

]
+ A(X)

= RF (X)

[
A∗(X)Xik−i1

]
+ · · · + RF (X)

[
A∗(X)Xi2−i1

]
+ RF (X) [A∗(X)] + A(X)

= B1(X) + A(X)

where A∗(X) = A(X)Xi1 and

B1(X) = RF (X)

[
A∗(X)Xik−i1

]
+ · · · + RF (X)

[
A∗(X)Xi2−i1

]
+ RF (X) [A∗(X)]

Because RF (X) [A∗(X)] = RF (X)

[
A(X)Xi1

]
= RF (X)

[
(A(X)Xh−s)Xi1−(h−s)

]
, the term RF (X) [A∗(X)] can

be computed with r0 = 1 + 5.5[i1 − (h − s)] operations for a given A(X). Using Remark 12, B1(X) can be
computed with

r1 = 5.5(ik − i1) + k − 2 + 1 + r0

= 5.5[ik − (h − s)] + k

operations. Thus, the number of operations required for computing B(X) is

r = r1 + 1
= 5.5[ik − (h − s)] + k + 1

which is substituted into (65) to yield

eb

e
=

{
(4 + 5.5s)/(6 + 5.5[ik − (h − s)] + k + 1) if h = 8, 16, 32, 64
(4 + 5.5s)/(7 + 5.5[ik − (h − s)] + k + 1) if h "= 8, 16, 32, 64 (71)

Case 3: m∗ = k. We then have

F (X) = Xh + Xik + · · · + Xi1 + 1

where ik > h − s, and in ≤ h − s for all n < k. We have

B(X) = RF (X)

[
A(X)Xik

]
+ A(X)Xik−1 + · · · + A(X)Xi1 + A(X)

= RF (X)

[
A(X)Xik

]
+ B2(X)

where
B2(X) = A(X)Xik−1 + · · · + A(X)Xi1 + A(X)

Because RF (X)

[
A(X)Xik

]
= RF (X)

[
(A(X)Xh−s)Xik−(h−s)

]
, the term RF (X)

[
A(X)Xik

]
can be com-

puted with r0 = 1+5.5[ik − (h−s)] operations for a given A(X). Using Remark 11, B2(X) can be computed
with r2 = 2(k − 1) operations. Thus, the number of operations required for computing B(X) is

r = r0 + r2 + 1
= 5.5[ik − (h − s)] + 2k

which is substituted into (65) to yield

eb

e
=

{
(4 + 5.5s)/(6 + 5.5[ik − (h − s)] + 2k) if h = 8, 16, 32, 64
(4 + 5.5s)/(7 + 5.5[ik − (h − s)] + 2k) if h "= 8, 16, 32, 64 (72)

For example, consider the CRC-32-IEEE 802.3 generated by (70), i.e., h = 32, k = 13, ik = 26. Assume
that s = 8. Substituting these values into (72) yields eb/e = 48/43, i.e., the new technique is slightly faster
than the basic technique.
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C.2 CRC Generator Polynomials of Weight 4

We now consider the special case k = 2, i.e., F (X) is a polynomial of weight 4:

F (X) = Xh + Xi2 + Xi1 + 1

where h > i2 > i1 > 0. In particular, F (X) = Fh(X) = Xh + X2 + X + 1 when i2 = 2 and i1 = 1. Fig. 26
lists some weight-4 polynomials F (X) = Xh + Xi2 + Xi1 + 1, which have periods that are greater than
those of Fh(X), for h ≤ 32. Recall from Theorem 2 that the maximum length of a CRC equals the period
of its generator polynomial. In the following, we consider the application of the new technique to weight-4
generator polynomials for CRCs such as CRC-16 and CRC-CCITT. For brevity, we only present the results
for s < h (the case s ≥ h can be handled similarly). There are 3 cases to consider.

Case 1: i2 ≤ h − s (i.e., s ≤ h − i2). Using the new technique, we have B(X) =
RF (X)

[
A(X)(Xi2 + Xi1 + 1)

]
= A(X)(Xi2 + Xi1 + 1), i.e., the polynomial division is eliminated. Sub-

stituting k = 2 into (66), we have

e =
{

80/s if h = 8, 16, 32, 64
88/s if h $= 8, 16, 32, 64 (73)

By comparing (73) with (39), we have
e = ef (74)

for s ≤ h− i2. Using k = 2 and s ≤ h− i2 in (68), it can be shown that the new technique is faster than the
basic technique when

2 ≤ s ≤ h − i2 (75)

For example, let F (X) = X32 + X4 + X + 1, i.e., h = 32 and i2 = 4. It follows from (75) that the new
technique is faster the basic technique when 2 ≤ s ≤ 28. Under this condition, we have

B(X) = A(X)(X4 + X + 1) (76)

i.e., the polynomial division is eliminated. Fig. 26 shows that the 32-bit CRC generated by F (X) has
the maximum length of 2,147,483,647 = 231 − 1 bits (≈ 268,435,456 bytes). Recall from Fig. 5 that the
original fast 32-bit CRC, generated by F32(X) = X32 + X2 + X + 1, has the maximum length of 2,097,151
≈ (231 − 1)/1024 bits (≈ 262,143 bytes). Thus, the maximum length of the CRC generated by F (X) is
substantially larger than that of the fast CRC generated by F32(X). However, (74) shows that these 2 CRCs
have identical complexity when s ≤ 28.

Consider the 12-bit CRC generated by F (X) = X12 + X3 + X + 1. Fig. 26 shows that this CRC
has the maximum length of 2,046 bits, which is much larger than that of the fast CRC generated by
F12(X) = X12 + X2 + X + 1, which has the maximum length of only 595 bits (see Fig. 5). However, (74)
shows that these 2 CRCs have identical complexity when s ≤ 9.

Case 2: i2 > h − s and i1 ≤ h − s. Using the new technique, we have B(X) =
RF (X)

[
A(X)(Xi2 + Xi1 + 1)

]
= RF (X)

[
A(X)Xi2

]
+ A(X)Xi1 + A(X). Substituting k = 2 into (67) yields

eb

e
=

{
(4 + 5.5s)/(10 + 5.5[i2 − (h − s)]) if h = 8, 16, 32, 64
(4 + 5.5s)/(11 + 5.5[i2 − (h − s)]) if h $= 8, 16, 32, 64

For example, consider the CRC-CCITT generated by F (X) = X16 + X12 + X5 + 1, i.e., h = 16, i2 = 12,
and i1 = 5. Assume that s = 8. We then have eb/e = (4 + 5.5 × 8)/(10 + 5.5 × 4) = 48/32 = 1.5. Thus, for
the 16-bit CRC-CCITT, the new technique is 50% faster than the basic technique.

Next, consider the CRC-16 generated by F (X) = X16 + X15 + X2 + 1, i.e., h = 16, i2 = 15, and i1 = 2.
Assume also that s = 8. We then have eb/e = (4 + 5.5× 8)/(10 + 5.5× 7) = 48/48.5. Thus, for the CRC-16,
the new technique is slightly slower than the basic technique.

Case 3: i1 > h − s. Using the new technique, we have B(X) = RF (X)

[
A(X)(Xi2 + Xi1 + 1)

]
=

RF (X)

[
A(X)Xi2

]
+ RF (X)

[
A(X)Xi1

]
+ A(X). Substituting k = 2 into (71) yields

eb

e
=

{
(4 + 5.5s)/(9 + 5.5[i2 − (h − s)]) if h = 8, 16, 32, 64
(4 + 5.5s)/(10 + 5.5[i2 − (h − s)]) if h $= 8, 16, 32, 64
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Xh + Xi2 + Xi1 + 1 period 2h−1−1
period

X5 + X3 + X + 1 15 1
X7 + X3 + X2 + 1 62 1.01613
X7 + X4 + X2 + 1 63 1
X9 + X5 + X3 + 1 255 1
X10 + X3 + X2 + 1 511 1
X11 + X3 + X + 1 1023 1
X12 + X3 + X + 1 2046 1.00049
X12 + X7 + X2 + 1 2047 1
X15 + X3 + X2 + 1 16382 1.00006
X15 + X5 + X3 + 1 16383 1
X17 + X3 + X + 1 63457 1.03275
X17 + X4 + X3 + 1 65534 1.00002
X17 + X10 + X4 + 1 65535 1
X18 + X5 + X2 + 1 98301 1.33336
X18 + X5 + X4 + 1 131071 1
X19 + X3 + X2 + 1 262142 1
X19 + X5 + X3 + 1 262143 1
X20 + X4 + X3 + 1 521985 1.00441
X20 + X7 + X5 + 1 524286 1
X20 + X11 + X2 + 1 524287 1
X21 + X3 + X + 1 1048575 1
X22 + X3 + X + 1 491460 4.26719
X22 + X3 + X2 + 1 2094081 1.00147
X22 + X7 + X4 + 1 2097151 1
X23 + X3 + X + 1 4161409 1.0079
X23 + X6 + X + 1 4194300 1
X23 + X7 + X6 + 1 4194302 1
X23 + X8 + X2 + 1 4194303 1
X25 + X3 + X + 1 4194303 4
X25 + X4 + X + 1 7864260 2.13335
X25 + X4 + X3 + 1 12070842 1.3899
X25 + X5 + X + 1 16766977 1.00061
X25 + X6 + X3 + 1 16777212 1
X25 + X9 + X2 + 1 16777214 1
X25 + X14 + X2 + 1 16777215 1
X26 + X3 + X + 1 32505732 1.03226
X26 + X4 + X + 1 33554431 1
X27 + X3 + X2 + 1 67108862 1
X27 + X5 + X + 1 67108863 1
X28 + X3 + X + 1 97517382 1.37635
X28 + X5 + X2 + 1 134217727 1
X29 + X11 + X + 1 268435455 1
X30 + X3 + X + 1 536870908 1
X30 + X7 + X6 + 1 536870911 1
X31 + X3 + X2 + 1 50133510 21.4176
X31 + X4 + X + 1 1073213442 1.00049
X31 + X6 + X2 + 1 1073602561 1.00013
X31 + X6 + X3 + 1 1073741822 1
X31 + X12 + X2 + 1 1073741823 1
X32 + X3 + X + 1 21691754 99
X32 + X3 + X2 + 1 22362795 96.0293
X32 + X4 + X + 1 2147483647 1

Fig. 26 The period of Xh + Xi2 + Xi1 + 1

C.3 CRC Generator Polynomials of Weight 3

We now consider the special case k = 1, i.e., F (X) is a polynomial of weight 3: F (X) = Xh + Xi1 + 1. By
defining i = i1, we have

F (X) = Xh + Xi + 1 (77)
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where h > i > 0. Note that F (X) = Th(X) = Xh + X + 1 for the special case i = 1. Fig. 27 lists some
weight-3 polynomials along with their periods, for h ≤ 31. In Section B.2, the fast h∗-bit perfect codes are
constructed from the CRCs generated by Th(X) for h∗ = 4, 8, 16, 64, 128, where h∗ = h+1. In the following,
we show that other fast perfect codes can also be constructed from CRCs generated by weight-3 polynomials.

Let C be the h-bit CRC generated by F (X) in (77). Recall from Theorem 2 that the maximum length
of C equals the period of F (X). Assume that s ≤ h − i. Using the new technique, we have B(X) =
RF (X)

[
A(X)(Xi + 1)

]
= A(X)(Xi + 1), i.e., the polynomial division is eliminated. Let e be the operation

count per input byte required for computing the check tuple P (X) of the h-bit CRC C. Then e is given
by (66).

Let C∗ be the non-CRC code that is constructed by adding an overall parity bit to the h-bit CRC C,
and P ∗(X) be the check tuple of C∗. Let e∗ be the operation count per input byte required for computing
P ∗(X). Note that P ∗(X) has h + 1 bits, which can be computed by an algorithm that is similar to Fig. 25.
Using (66) and Fig. 25, it can then be shown that

e∗ =
{

8(7 + 2k)/s if h = 8, 16, 32, 64
8(8 + 2k)/s if h #= 8, 16, 32, 64 (78)

Substituting k = 1 into (78), we have

e∗ =
{

72/s if h = 8, 16, 32, 64
80/s if h #= 8, 16, 32, 64 (79)

Let us now compare the speed of the (h + 1)-bit code C∗ with that of the fast (h +1)-bit CRC generated
by Fh+1(X) = Xh+1 + X2 + X + 1. From (39), we have

ef =
{

80/s if h + 1 = 8, 16, 32, 64
88/s if h + 1 #= 8, 16, 32, 64 (80)

for s < h. By comparing (79) with (80), we have

e∗ ≤ ef (81)

for s ≤ h− i. Thus, (81) shows that the (h+1)-bit non-CRC code C∗ is at least as fast as the fast (h+1)-bit
CRC generated by Fh+1(X), i.e., C∗ is also a fast code for s ≤ h − i. Further, at its maximum length, the
code C∗ is the (2h, 2h − h − 1, 4) extended Hamming perfect code, provided that F (X) = Xh + Xi + 1 is a
primitive polynomial (i.e., its period is 2h − 1).

For example, let F (X) = X11 +X2 +1, i.e., h = 11 and i = 2. Fig. 27 shows that F (X) is primitive. Let
C be the 11-bit CRC generated by F (X). The non-CRC code C∗, which is constructed by adding an overall
parity bit to C, is the (2048, 2036, 4) extended Hamming perfect code. Note that both C and C∗ are fast if
we choose s ≤ h − i = 9. Suppose that we choose s = 8. From (79) and (80), we then have e∗ = 80/8 = 10
and ef = 88/8 = 11, i.e., e∗ < ef . Thus, for s = 8, the non-CRC 12-bit code C∗ is faster than the fast 12-bit
CRC generated by F12(X) = X12 +X2 +X +1. Further, the maximum length of the non-CRC code (which
is 2,048 bits) is also much longer than that of the fast CRC generated by F12(X) (which is 595 bits), and 2
bits longer than that of the CRC generated by F (X) = X12 + X3 + X + 1 (which is 2,046 bits, as discussed
in Section C.2).

Similarly, we can construct a 32-bit extended Hamming perfect code C∗ by adding an overall parity bit
to the CRC C generated by F (X) = X31 + X3 + 1 (see Fig. 27). We have h = 31 and i = 3. Both C and
C∗ are fast if we choose s ≤ h − i = 28.
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Xh + Xi + 1 period 2h−1
period

X3 + X + 1 7 1
X4 + X + 1 15 1
X5 + X + 1 21 1.47619
X5 + X2 + 1 31 1
X6 + X + 1 63 1
X7 + X + 1 127 1
X8 + X + 1 63 4.04762
X8 + X3 + 1 217 1.17512
X9 + X + 1 73 7
X9 + X2 + 1 465 1.09892
X9 + X4 + 1 511 1
X10 + X + 1 889 1.15073
X10 + X3 + 1 1023 1
X11 + X + 1 1533 1.33529
X11 + X2 + 1 2047 1
X12 + X + 1 3255 1.25806
X13 + X + 1 7905 1.03618
X13 + X3 + 1 8001 1.02375
X14 + X + 1 11811 1.3871
X15 + X + 1 32767 1
X16 + X + 1 255 257
X16 + X3 + 1 57337 1.14298
X16 + X7 + 1 63457 1.03275
X17 + X + 1 273 480.114
X17 + X2 + 1 114681 1.14292
X17 + X3 + 1 131071 1
X18 + X + 1 253921 1.03238
X18 + X7 + 1 262143 1
X19 + X + 1 413385 1.26828
X19 + X3 + 1 491505 1.0667
X19 + X6 + 1 520065 1.00812
X20 + X + 1 761763 1.37651
X20 + X3 + 1 1048575 1
X21 + X + 1 5461 384.023
X21 + X2 + 1 2097151 1
X22 + X + 1 4194303 1
X23 + X + 1 2088705 4.01618
X23 + X2 + 1 7864305 1.06667
X23 + X5 + 1 8388607 1
X24 + X + 1 2097151 8
X24 + X5 + 1 16766977 1.00061
X25 + X + 1 10961685 3.06107
X25 + X2 + 1 25165821 1.33333
X25 + X3 + 1 33554431 1
X26 + X + 1 298935 224.493
X26 + X3 + 1 2094081 32.0469
X26 + X5 + 1 67074049 1.00052
X27 + X + 1 125829105 1.06667
X27 + X8 + 1 133693185 1.00392
X28 + X + 1 17895697 15
X28 + X3 + 1 268435455 1
X29 + X + 1 402653181 1.33333
X29 + X2 + 1 536870911 1
X30 + X + 1 10845877 99
X30 + X7 + 1 1073215489 1.00049
X31 + X + 1 2097151 1024
X31 + X2 + 1 22362795 96.0293
X31 + X3 + 1 2147483647 1

Fig. 27 The period of Xh + Xi + 1
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APPENDIX D CRC PARALLEL IMPLEMENTATION

Given a CRC, which is generated by a polynomial M(X) of degree h, our goal is to compute the check
h-tuple P (X) to protect an input message U(X) = (Q0(X), . . . , Qn−1(X)), where Qi(X) is an s-tuple.

So far, it is implicitly assumed that the CRC algorithms are for sequential implementation. That is, the
entire input message U(X) is supplied to a single processor of a computer, and the output P (X) is then
computed by this same processor. Following the technique in [6], we can modify these CRC algorithms for
parallel implementation on k different processors of a computer, k > 1, as follows.

First, the input message U(X) is divided into k sub-messages E0(X), . . . , Ek−1(X), i.e.,

U(X) = (E0(X), . . . , Ek−1(X))

where Ei(X) consists of ni s-tuples. Thus, n = n0 + · · · + nk−1. Define

Wi(X) = RM(X)

[
X(ni+1+···+nk−1)s

]
(82)

for 0 ≤ i ≤ k − 2, and Wk−1(X) = 1. Note that Wi(X) is computed from X(ni+1+···+nk−1)s, which is used
to determine the relative position of sub-message Ei(X) in U(X) (see Remark 14).

Next, for each i = 0, 1, . . . , k − 1, input sub-message Ei(X) is supplied to processor i, which is used to
compute the following h-tuples:

Pi(X) = RM(X)

[
Ei(X)Xh

]
(83)

Zi(X) = RM(X) [Pi(X)Wi(X)] (84)

where Wi(X) is defined by (82). Note that Pi(X) is the CRC check tuple computed by processor i for
sub-message Ei(X). For each i = 0, 1, . . . , k − 1, we assume that processor i computes Pi(X) and Zi(X) in
(83) and (84), independent of other processors, i.e., the computation is done in parallel by the k processors.
Theorem 5. The tuples Zi(X), 0 ≤ i < k, which are computed in parallel by the k processors, are combined
to yield the final CRC check h-tuple P (X) for the entire input message U(X), i.e.,

P (X) =
k−1∑

i=0

Zi(X) (85)

Proof. In polynomial notation, we have

U(X) =
k−2∑

i=0

Ei(X)X(ni+1+···+nk−1)s + Ek−1(X)

The CRC check tuple P (X) for U(X) then becomes

P (X) = RM(X)

[
U(X)Xh

]

=
k−2∑

i=0

RM(X)

[
Ei(X)XhX(ni+1+···+nk−1)s

]
+ RM(X)

[
Ek−1(X)Xh

]

=
k−2∑

i=0

RM(X) [Pi(X)Wi(X)] + Pk−1(X)

=
k−1∑

i=0

RM(X) [Pi(X)Wi(X)]

=
k−1∑

i=0

Zi(X)

#$
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We now determine the total CRC computation time, denoted by ttotal, for the parallel technique. First,
let tWi , tPi , and tZi be the times for processor i to compute Wi(X), Pi(X), and Zi(X), respectively. Let
tP be the time for the computer to compute the summation (85). We can consider tWi , tZi , and tP as the
overhead costs for the CRC parallel implementation. Because the k processors compute (83) and (84) in
parallel, the total time for the computer to compute the final CRC check tuple P (X) is

ttotal = tWi + max{tPi + tZi , 0 ≤ i < k} + tP (86)

We now determine the speedup factor for the parallel technique under the following ideal conditions:
(a) the k processors have identical computational capability, (b) the sub-messages Ei(X) have the same
length, i.e., ni = n/k, and (c) the overhead costs tWi , tZi , and tP are negligible compared to tPi , i.e.,
tWi + tPi + tZi + tP ≈ tPi (see Remark 14). From (86), we then have ttotal ≈ tPi ≈ tU/k, where tU denotes
the time for a single processor to compute the CRC check tuple P (X) for the entire message U(X), i.e., tU is
the CRC computational time for sequential implementation. Thus, under the ideal conditions, the speedup
factor is approximately k for parallel implementation.
Remark 14. Under the CRC parallel implementation, processor i computes Wi(X), Pi(X), and Zi(X) as
given in (82)–(84), i = 1, . . . , k − 1. These tuples can be computed as follows. First, it can be shown from
(82) that

Wi(X) = RM(X) [Xni+1sWi+1(X)]

with Wk−1 = 1. Thus, once Wi+1(X) is known, Wi(X) can be computed in O(ni+1s) steps (by Remark 1).
We can also write Wi(X) = RM(X)

[
Xni+1s−hWi+1(X)Xh

]
, i.e., we can view Wi(X) as the output check tuple

of the CRC generated by M(X) when Xni+1s−hWi+1(X) is the input tuple. Thus, Wi(X) can be computed
by either the CRC basic technique or the CRC new technique. Suppose now that n0, . . . , nk−1 are known
and fixed. The tuples W0(X), W1(X), . . . , Wk−1 can then be stored in a table defined by T [i] = Wi(X),
i = 0, 1, . . . , k − 1 (cf. [6]). Next, processor i can use either the basic technique or the new technique to
compute the (partial) CRC check tuple Pi(X). Further, using the technique “Mimic long multiplication as
done by hand” in [11, p. 90], it can be shown that the tuple Zi(X) = RM(X) [Pi(X)Wi(X)] can be computed
in O(h) steps. Finally, once Z0(X), . . . , Zk−1(X) are computed by the k processors, their summation in (85)
can be quickly computed. Thus, for a sufficiently long sub-message Ei(X) along with the use of table lookup
for determining Wi(X), the computational complexity of Pi(X) is much greater than that of Wi(X), Zi(X),
and the summation (85), i.e., tPi >> tWi , tZi , tP . $%
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